Skip to main content
Log in

Microcalorimetric study of the effect of manganese on the growth and metabolism in a heterogeneously expressing manganese-dependent superoxide dismutase (Mn-SOD) strain

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In bacteria, manganese (Mn) is best understood for its roles in protection against oxidative stress as a cofactor of manganese-dependent superoxide dismutase (Mn-SOD). There are four SOD enzymes, including two distinct Mn-SOD proteins (SodA1 and SodA2), with an approximately 53% amino sequence identity to each other, one Cu/Zn-SOD and one Fe-SOD in Bacillus thuringiensis. The specific activity of heterogeneously expressed SodA1 enzyme in Escherichia coli was 10,860 U mg−1, which was enhanced with the addition of elevated exogenous Mn(II) levels and reached the highest specific activity (14,519 U mg−1) at 80 μM Mn(II). However, neither the purified SodA1 enzyme nor the E. coli recombinant strain BL21-SOD could oxidize Mn(II) in vitro or in vivo. The growth of BL21-SOD strain was also increased by 2 mM Mn(II), and its intracellular accumulated Mn(II) level reached 41.5 μM. The obtained power–time curves from microcalorimetric assay demonstrated that Q peak of BL21-SOD cultivated with 2 mM Mn(II) was significantly increased, which was 3.55-fold and 3.85-fold higher than the parent strain BL21(DE3) and control strain BL21-pET, respectively, indicating that the exposure of Mn(II) and accompanying oxidative stress might induce and activate the overproduction of SodA1 to eliminate toxic O 2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tebo BM, Clement BG, Dick GJ. Biotransformations of manganese. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD, editors. Manual of Environmental Microbiology. Washington DC: ASM Press; 2007. p. 1223–38.

    Google Scholar 

  2. Bowman AB, Kwakye GF, Hernández EH, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Bio. 2011;25:191–203.

    Article  CAS  Google Scholar 

  3. Eijkelkamp BA, McDevitt CA, Kitten T. Manganese uptake and streptococcal virulence. Biometals. 2015;28:491–508.

    Article  CAS  Google Scholar 

  4. Jensen AN, Jensen LT. Manganese in health and disease: manganese transport, trafficking and function in invertebrates. In: Costa LG, Aschner M, editors. Cambridge: Royal Society of Chemistry; 2014. pp. 1–33.

  5. Papp-Wallace KM, Maguire ME. Manganese transport and the role of manganese in virulence. Annu Rev Microbiol. 2006;60:187–209.

    Article  CAS  Google Scholar 

  6. Roth JA. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res. 2006;39:45–57.

    Article  CAS  Google Scholar 

  7. Francis CA, Tebo BM. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals. J Mol Microbiol Biotechnol. 1999;1:71–8.

    CAS  Google Scholar 

  8. Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, et al. Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Pl Sc. 2004;32:287–328.

    Article  CAS  Google Scholar 

  9. Dick GJ, Torpey JW, Beveridge TJ, Tebo BM. Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. App Environ Microbiol. 2008;74:1527–34.

    Article  CAS  Google Scholar 

  10. Corstjens PLAM, de Vrind JPM, Goosen T, de Vrind-de Jong EW. Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J. 1997;14:91–108.

    Article  CAS  Google Scholar 

  11. Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp ACM 3067. Environ Microbiol. 2007;9:944–53.

    Article  CAS  Google Scholar 

  12. Su J, Bao P, Bai T, Deng L, Liu F, He J. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS ONE. 2013;8:e60573.

    Article  CAS  Google Scholar 

  13. Su J, Deng L, Huang L, Guo S, Liu F, He J. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. Water Res. 2014;56:304–13.

    Article  CAS  Google Scholar 

  14. Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM. Formation of manganese oxides by bacterially generated superoxide. Nat Geosci. 2011;4:95–8.

    Article  CAS  Google Scholar 

  15. Duckworth OW, Sposito G. Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol. 2005;39:6037–44.

    Article  CAS  Google Scholar 

  16. Parker DL, Morita T, Mozafarzadeh ML, Verity R, McCarthy JK, Tebo BM. Inter-relationships of MnO2 precipitation, siderophore-Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II)-oxidizing bacterial cultures. Geochim Cosmochimi Ac. 2007;71:5672–83.

    Article  CAS  Google Scholar 

  17. Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem. 2012;287:13541–8.

    Article  CAS  Google Scholar 

  18. Miller A-F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 2012;586:585–95.

    Article  CAS  Google Scholar 

  19. Bafana A, Dutt S, Kumar S, Ahuja PS. Superoxide dismutase: an industrial perspective. Crit Rev Biotechnol. 2011;31:65–76.

    Article  CAS  Google Scholar 

  20. Bafana A, Dutt S, Kumar A, Kumar S, Ahuja PS. The basic and applied aspects of superoxide dismutase. J Mol Catal B-Enzym. 2011;68:129–38.

    Article  CAS  Google Scholar 

  21. Aguirre JD, Clark HM, McIlvin M, Vazquez C, Palmere SL, Grab DJ, et al. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen. Borrelia burgdorferi. J Biol Chem. 2013;288:8468–78.

    Article  CAS  Google Scholar 

  22. Zhu Y, Wang G, Ni H, Xiao A, Cai H. Cloning and characterization of a new manganese superoxide dismutase from deep-sea thermophile Geobacillus sp EPT3. World J Microb Biot. 2014;30:1347–57.

    Article  CAS  Google Scholar 

  23. Wang Y, Mo X, Zhang L, Wang Q. Four superoxide dismutase (isozymes) genes of Bacillus cereus. Ann Microbiol. 2011;61:355–60.

    Article  Google Scholar 

  24. Ahmad SI, Yokoi M, Hanaoka F. Identification of new scavengers for hydroxyl radicals and superoxide dismutase by utilising ultraviolet A photoreaction of 8-methoxypsoralen and a variety of mutants of Escherichia coli: implications on certain diseases of DNA repair deficiency. J Photoch Photobio B. 2012;116:30–6.

    Article  CAS  Google Scholar 

  25. Liu P, Ewis HE, Huang Y-J, Lu C-D, Tai PC, Weber IT. Structure of Bacillus subtilis superoxide dismutase. Acta Crystallogr F. 2007;63:1003–7.

    Article  CAS  Google Scholar 

  26. Boucher IW, Kalliomaa AK, Levdikov VM, Blagova EV, Fogg MJ, Brannigan JA, et al. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre. Acta Crystallogr F. 2005;61:621–4.

    Article  CAS  Google Scholar 

  27. Wang Y, Wang H, Yang C-H, Wang Q, Mei R. Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiol Lett. 2007;272:206–13.

    Article  CAS  Google Scholar 

  28. Passalacqua KD, Bergman NH, Herring-Palmer A, Hanna P. The superoxide dismutases of Bacillus anthracis do not cooperatively protect against endogenous superoxide stress. J Bacteriol. 2006;188:3837–48.

    Article  CAS  Google Scholar 

  29. Xu X-J, Xue Z, Qi Z-D, Hou A-X, Li C-H, Liu Y. Antibacterial activities of manganese(II) ebselen-porphyrin conjugate and its free components on Staphylococcus aureus investigated by microcalorimetry. Thermochim Acta. 2008;476:33–8.

    Article  CAS  Google Scholar 

  30. Chen K, Zhu Q, Qian Y, Song Y, Yao J, Choi MM. Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. Ecotox Environ Safe. 2013;98:361–7.

    Article  CAS  Google Scholar 

  31. Zhang S, Hu Y, Fan Q, Wang X, He J. Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis. Antonie Van Leeuwenhoek. 2015;108:365–76.

    Article  CAS  Google Scholar 

  32. Chen Y, Yao J, Wang F, Zhou Y, Chen H, Gai N, et al. Toxic effect of inorganic arsenite [As(III)] on metabolic activity of Bacillus subtilis by combined methods. Curr Microbiol. 2008;57:258–63.

    Article  CAS  Google Scholar 

  33. Yao J, Tian L, Wang F, Chen H-L, Xu C-Q, Su C-L, et al. Microcalorimetric study on effect of chromium(III) and Chromium(VI) species on the growth of Escherichia coli. Chinese J Chem. 2008;26:101–6.

    Article  CAS  Google Scholar 

  34. Xu J, Feng Y, Barros N, Zhong L, Chen R, Lin X. Exploring the potential of microcalorimetry to study soil microbial metabolic diversity. J Therm Anal Calorim. 2017;127:1457–65.

    Article  CAS  Google Scholar 

  35. Masakorala K, Yao J, Chandankere R, Liu H, Liu W, Cai M, et al. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil. Environ Sci Pollut R. 2014;21:454–63.

    Article  CAS  Google Scholar 

  36. Yao J, Xu C, Wang F, Tian L, Wang Y, Chen H, et al. An in vitro microcalorimetric method for studying the toxic effect of cadmium on microbial activity of an agricultural soil. Ecotoxicology. 2007;16:503–9.

    Article  CAS  Google Scholar 

  37. Zheng Q, Li R, Li C, Zhao Y, Wang Y, Wang J, Wang R, Zhang Y, Liu H, Li J, Xiao X. Microcalorimetric investigation of five Aconitum L. plants on the metabolic activity of mitochondria isolated from rat liver. J Therm Anal Calorim 2015;120:335–344.

    Article  Google Scholar 

  38. Zhou Y, Chen H, Yao J, He M, Si Y, Feng L, et al. Influence of clay minerals on the Bacillus halophilus Y38 activity under anaerobic condition. Appl Clay Sci. 2010;50:533–7.

    Article  CAS  Google Scholar 

  39. Chen HL, Yao J, Wang L, Wang F, Bramanti E, Maskow T, et al. Evaluation of solvent tolerance of microorganisms by microcalorimetry. Chemosphere. 2009;74:1407–11.

    Article  CAS  Google Scholar 

  40. Edwards RA, Baker HM, Whittaker MM, Whittaker JW, Jameson GB, Baker EN. Crystal structure of Escherichia coli manganese superoxide dismutase at 2.1-Å resolution. J Biol Inorg Chem. 1998;3:161–71.

    Article  CAS  Google Scholar 

  41. Kim YC, Miller CD, Anderson AJ. Superoxide dismutase activity in Pseudomonas putida affects utilization of sugars and growth on root surfaces. Appl Environ Microbiol. 2000;66:1460–7.

    Article  CAS  Google Scholar 

  42. Areekit S, Kanjanavas P, Khawsak P, Pakpitchareon A, Potivejkul K, Chansiri G, et al. Cloning, expression, and characterization of thermotolerant manganese superoxide dismutase from Bacillus sp. MHS47. Int J Mol Sci. 2011;12:844–56.

    Article  CAS  Google Scholar 

  43. Motoshima H, Minagawa E, Tsukasaki F, Kaminogawa S. Cloning and nucleotide sequencing of genes encoding Mn-superoxide dismutase and class II fumarase from Thermus aquaticus YT-1. J Ferment Bioeng. 1998;86:21–7.

    Article  CAS  Google Scholar 

  44. Ekanayake PM, Kang H-S, De Zyosa M, Jee Y, Lee Y-H, Lee J. Molecular cloning and characterization of Mn-superoxide dismutase from disk abalone (Haliotis discus discus). Comp Biochem Phys B. 2006;145:318–24.

    Article  Google Scholar 

  45. Ken CF, Lee CC, Duan KJ, Lin CT. Unusual stability of manganese superoxide dismutase from a new species, Tatumella ptyseos ct: its gene structure, expression, and enzyme properties. Protein Expres Purif. 2005;40:42–50.

    Article  CAS  Google Scholar 

  46. Boyadzhieva IP, Atanasova M, Emanuilova E. A novel, thermostable manganese-containing superoxide dismutase from Bacillus licheniformis. Biotechnol Lett. 2010;32:1893–6.

    Article  CAS  Google Scholar 

  47. Niven DF, Ekins A, Al-Samaurai AA. Effects of iron and manganese availability on growth and production of superoxide dismutase by Streptococcus suis. Can J Microbiol. 1999;45:1027–32.

    Article  CAS  Google Scholar 

  48. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265–74.

    Article  CAS  Google Scholar 

  49. Pugh SY, Fridovich I. Induction of superoxide dismutases in Escherichia coli B by metal chelators. J Bacteriol. 1985;162:196–202.

    CAS  Google Scholar 

  50. Pugh SY, DiGuiseppi JL, Fridovich I. Induction of superoxide dismutases in Escherichia coli by manganese and iron. J Bacteriol. 1984;160:137–42.

    CAS  Google Scholar 

  51. Anjem A, Varghese S, Imlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol. 2009;72:844–58.

    Article  CAS  Google Scholar 

  52. Ezra FS, Lucas DS, Russell AF. 31P-NMR and ESR studies of the oxidation states of manganese in Staphylococcus aureus. Biochim Biophys Acta. 1984;803:90–4.

    Article  CAS  Google Scholar 

  53. Archibald FS, Duong M-N. Manganese acquisition by Lactobacillus plantarum. J Bacteriol. 1984;158:1–8.

    CAS  Google Scholar 

  54. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ. Manganese: elemental defence for a life with oxygen? Trends Microbiol. 2002;10:496–501.

    Article  CAS  Google Scholar 

  55. Yao J, Liu Y, Gao Z, Liu P, Sun M, Qu S, et al. A microcalorimetric study of the biologic effect of Mn(II) on Bacillus thuringiensis growth. J Therm Anal Calorim. 2002;70:415–21.

    Article  CAS  Google Scholar 

  56. Yao J, Liu Y, Liu P, Gao Z, Sun M, Qu S, et al. Microcalorimetric investigation of the effect of manganese(II) on the growth of Tetrahymena shanghaiensis S199. Biol Trace Elem Res. 2003;92:71–82.

    Article  CAS  Google Scholar 

  57. Wagner A. Energy constraints on the evolution of gene expression. Mol Biol Evol. 2005;22:1365–74.

    Article  CAS  Google Scholar 

  58. Erikson KM, Dobson AW, Dorman DC, Aschner M. Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ. 2004;334–335:409–16.

    Article  Google Scholar 

  59. Chang EC, Kosman DJ. Intracellular Mn(II)-associated superoxide scavenging activity protects Cu, Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem. 1989;264:12172–8.

    CAS  Google Scholar 

  60. Inaoka T, Matsumura Y, Tsuchido T. SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. J Bacteriol. 1999;181:1939–43.

    CAS  Google Scholar 

  61. Wang M, Su X, Li Y, Jun Z, Li T. Cloning and expression of the Mn-SOD gene from Phascolosoma esculenta. Fish Shellfish Immun. 2010;29:759–64.

    Article  Google Scholar 

  62. Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med. 2006;41:1338–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 31270105), the Fundamental Research Funds for the Central universities (Grant 2662015PY175), the National High-tech R&D Program of China (863 Program, Grant 2011AA10A205) and the National Basic Research Program of China (973 Program, Grant 2010CB126105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Li, Z., Liao, B. et al. Microcalorimetric study of the effect of manganese on the growth and metabolism in a heterogeneously expressing manganese-dependent superoxide dismutase (Mn-SOD) strain. J Therm Anal Calorim 130, 1407–1416 (2017). https://doi.org/10.1007/s10973-017-6282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6282-8

Keywords

Navigation