Skip to main content
Log in

Removal of chlorinated organic compounds during wastewater treatment: achievements and limits

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A large number of chlorinated contaminants are found in wastewater, originating from domestic and industrial sources and from runoff captured by sewers. The presence of some of these contaminants, such as the pharmaceutical diclofenac, has recently been documented, whereas the presence of other contaminants, such as polychlorinated biphenyls, has been known for many years. This mini-review discusses the current state of knowledge regarding the degradation and outflow of chlorinated contaminants from municipal wastewater treatment plants (WWTPs) and the known physiologies of bacteria capable of degrading these contaminants, and summarizes current knowledge gaps as a way to focus future research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO (2008) Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World J Microbiol Biotechnol 24:1203–1208. doi:10.1007/s11274-007-9594-1

    Article  CAS  Google Scholar 

  • Adrian L, Dudková V, Demnerová K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 75(13):4516–4524. doi:10.1128/AEM.00102-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahn Y-B, Liu F, Fennell DE, Häggblom MM (2008) Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbiol Ecol 66(2):271–281. doi:10.1111/j.1574-6941.2008.00557.x

  • Baba D, Yasuta T, Yoshida N, Kimura Y, Miyake K, Inoue Y, Toyota K, Katayama A (2007) Anaerobic biodegradation of polychlorinated biphenyls by a microbial consortium originated from uncontaminated paddy soil. World J Microbiol Biotechnol 23(11):1627–1636. doi:10.1007/s11274-007-9409-4

    Article  CAS  Google Scholar 

  • Bae HS, Lee JM, Lee S-T (1996) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145(1):125–129

    Article  CAS  PubMed  Google Scholar 

  • Baugros J-B, Giroud B, Dessalces G, Grenier-Loustalot M-F, Cren-Olivé C (2008) Multiresidue analytical methods for the ultra-trace quantification of 33 priority substances present in the list of REACH in real water samples. Anal Chim Acta 607(2):191–203. doi:10.1016/j.aca.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  • Bedard DL, Ritalahti KM, Löffler FE (2007) The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73(8):2513–2521. doi:10.1128/AEM.02909-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benabdallah El-Hadj T, Dosta J, Torres R, Mata-Álvarez J (2007) PCB and AOX removal in mesophilic and thermophilic sewage sludge digestion. Biochem Eng J 36(3):281–287. doi:10.1016/j.bej.2007.03.001

    Article  CAS  Google Scholar 

  • Bester K (2003) Triclosan in a sewage treatment process—balances and monitoring data. Water Res 37(16):3891–3896. doi:10.1016/S0043-1354(03)00335-x

    Article  CAS  PubMed  Google Scholar 

  • Blanchard M, Teil MJ, Ollivon D, Legenti L, Chevreuil M (2004) Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environ Res 95(2):184–197. doi:10.1016/j.envres.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  • Blaut M (1994) Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218. doi:10.1111/j.1574-6968.1994.tb07224.x

    Article  PubMed  Google Scholar 

  • Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microb 46(1):50–54

    CAS  Google Scholar 

  • Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421: 357–360

  • Buser HR, Poiger T, Müller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Technol 32(22):3449–3456. doi:10.1021/es980301x

    Article  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotech Bioeng 45:440–449

    Article  CAS  Google Scholar 

  • Chang YC, Hatsu M, Jung K, Yoo YS, Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Biosci Bioeng 89:489–491

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Ikeutsu K, Toyama T, Choi D, Kikuchi S (2011) Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria. J Ind Microbiol Biotechnol 38(10):1667–1677. doi:10.1007/s10295-011-0956-1

    Article  CAS  PubMed  Google Scholar 

  • Citulski JA, Farahbakhsh K (2010) Fate of endocrine-active compounds during municipal biosolids treatment: a review. Environ Sci Technol 44(22):8367–8376. doi:10.1021/es102403y

    Article  CAS  PubMed  Google Scholar 

  • Cutter LE, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3(11):699–709

    Article  CAS  PubMed  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31(4):285–311. doi:10.1002/jat.1660

    Article  CAS  PubMed  Google Scholar 

  • Delgado AG, Fajardo-Williams D, Popat SC, Torres CI, Krajmalnik-Brown R (2014) Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Appl Microbiol Biotechnol 98(6):2729–2737. doi:10.1007/s00253-013-5263-5

    Article  CAS  PubMed  Google Scholar 

  • Dennie D, Gladu I, Le’Pine F, Villemur R, Bisaillon JG, Beaudet R (1998) Spectrum of the reductive dehalogenation activity of Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 64:4603–4606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deo R, Halden R (2013) Pharmaceuticals in the built and natural water environment of the United States. Water 5(3):1346–1365. doi:10.3390/w5031346

    Article  CAS  Google Scholar 

  • Dudzinska MR (2005) Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in sewage and sludge of MWTP. In: Mornigham R, Dudzinska MR, Barich J, Gonzalez MA, Black RK (eds) Chemistry for the protection of the environment 4. Springer, US, pp 203–213

    Chapter  Google Scholar 

  • Fathepure BZ, Tiedje JM, Boyd SA (1988) Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl Environ Microbiol 54:327–330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38(7):2075–2081. doi:10.1021/es034989b

    Article  CAS  PubMed  Google Scholar 

  • Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fung JM, Morris RM, Adrian L, Zinder SH (2007) Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 73(14):4439–4445. doi:10.1128/AEM.00215-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Futagami T, Goto M, Furukawa K (2008) Biochemical and genetic bases of dehalorespiration. Chem Rec 8(1):1–12. doi:10.1002/tcr.20134

    Article  CAS  PubMed  Google Scholar 

  • Gautam P, Carsella JS, Kinney CA (2014) Presence and transport of the antimicrobials ticlocarban and triclosan in a wastewater-dominated stream and freshwater environment. Water Res 48(1):247–256. doi:10.1016/j.watres.2013.09.032

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AG, McIntyre AE, Perry R, Lester JN (1984) Behaviour of persistent organochlorine micropollutants during primary sedimentation of waste water. Sci Total Environ 39:27–47

    Article  Google Scholar 

  • He Q, Sanford RA (2003) Characterization of Fe(III) reduction by chlororespiring Anaeromyxobacter dehalogenans. Appl Environ Microbiol 69(5):2712–2718. doi:10.1128/AEM.69.5.2712-2718.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heidler J, Halden RU (2007) Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–369. doi:10.1016/j.chemosphere.2006.04.066

    Article  CAS  PubMed  Google Scholar 

  • Heidler J, Halden RU (2009) Fate of organohalogens in US wastewater treatment plants are estimated chemical releases to soils nationwide from biosolids recycling. J Environ Monit 11(12):2207–2215. doi:10.1039/b914324f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40(11):3634–3639. doi:10.1021/es052245n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holliger C, Schraa G, Stams AJM, Zehnder AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59(9):2991–2997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Phil Trans R Soc B 368:20120322. doi:10.1098/rstb.2012.0322

    Article  PubMed Central  PubMed  Google Scholar 

  • Hug C, Ulrich N, Schulze T, Brack W, Krauss M (2014) dentification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut 184:25–32. doi:10.1016:j.envpol.2013.07.048

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JL, Jacobson SW (1997) Evidence for PCBs as neurodevelopmental toxicants in humans. Neurotoxicology 18(2):415–424

    CAS  PubMed  Google Scholar 

  • Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78(4):1288–1291. doi:10.1128/AEM.07325-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katsoyiannis A, Zouboulis A, Samara C (2006) Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: model predictions against experimental values. Chemosphere 65(9):1634–1641. doi:10.1016/j.chemosphere.2006.02.030

    Article  CAS  PubMed  Google Scholar 

  • Katz DR, Cantwell MG, Sullivan JC, Perron MM, Burgess RM, Ho KT, Charpentier MA (2013) Factors regulating the accumulation and spatial distribution of the emerging contaminant triclosan in the sediments of an urbanized estuary: Greenwhich Bay, Rhode Island, USA. Sci Tot Environ 443:123–133. doi:10.1016/j.scitotenv.2012.10.052

    Article  CAS  Google Scholar 

  • Kim S-H, Harzman C, Davis JK, Hutcheson R, Broderick JB, Marsh TL, Tiedje JM (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 12:21. doi:10.1186/1471-2180-12-21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kittelmann S, Friedrich MW (2008) Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Environ Microbiol 10(6):1557–1570. doi:10.1111/j.1462-2920.2008.01571.x

    Article  CAS  PubMed  Google Scholar 

  • Krumholz LR, Sharp R, Fishbain SS (1996) A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62(11):4108–4113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krzmarzick MJ, Crary BB, Harding JJ, Oyerinde OO, Leri AC, Myneni SCB, Novak PJ (2012) Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microbiol 78(2):393–401. doi:10.1128/AEM.06510-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krzmarzick MJ, McNamara PJ, Crary BB, Novak PJ (2013) Abundance and diversity of organohalide-respiring bacteria in lake sediments across a geographical sulfur gradient. FEMS Microbiol Ecol 84(2):248–258. doi:10.1111/1574-6941.12059

    Article  CAS  PubMed  Google Scholar 

  • Krzmarzick MJ, Miller HR, Yan T, Novak PJ (2014) Novel Firmicutes group implicated in the dechlorination of two chlorinated xanthones, analogues of natural organochlorines. Appl Environ Microb 80(3):1210–1218. doi:10.1128/AEM.03472-13

    Article  CAS  Google Scholar 

  • Kupper T, deAlencastro LF, Berset JD (2010) Determination of sources and emissions of persistent organic contaminants by means of sewage sludge: results from a monitoring network. In: Fatta-Kassinos D, Bester K, Kümmer K (eds) Environmental pollution 16: xenobiotics in the urban water cycle: mass flows, environmental processes, mitigation and treatment strategies. Springer, 147-157

  • Langford KH, Lester JN (2003) Fate and behavior of endocrine disrupters in wastewater treatment processes. In: Lester JN, Birkett JW (eds) Endocrine disrupters in wastewater and sludge treatment processes. CRC Press, London, pp 103–143

    Google Scholar 

  • Lee DG, Zhao F, Rezenom YH, Russell DH, Chu K-H (2012) Biodegradation of triclosan by a wastewater microorganism. Water Res 46(13):4226–4234. doi:10.1016/j.watres.2012.05.025

    Article  CAS  Google Scholar 

  • Lee DG, Cho K-C, Chu K-H (2014) Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 25:55–65

    Article  CAS  Google Scholar 

  • Li X, Ke Z, Dong J (2011) PCDDs and PCDFs in sewage sludges from two wastewater treatment plants in Beijing, China. Chemosphere 82(5):635–638. doi:10.1016/j.chemosphere.2010.11.039

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39:2219–2228

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Park J-W, Häggblom MM (2014) Enriching for microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Pollut 184:222–230. doi:10.1016/j.envpol.2013.08.019

    Article  CAS  PubMed  Google Scholar 

  • Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacteria class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Micr 63:625–635. doi:10.1099/ijs.0.034926-0

    Article  Google Scholar 

  • Lohner ST, Spormann AM (2013) Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Phil Trans R Soc B 368(1616):20120326. doi:10.1098/rstb.2012.0326

    Article  PubMed Central  PubMed  Google Scholar 

  • Luijten ML, de Weert J, Smidt H, Boschker HTS, de Vos WM, Schraa G, Stams AJM (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793

    Article  CAS  PubMed  Google Scholar 

  • Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66(12):5141–5147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Majewsky M, Farlin J, Bayerle M, Gallé T (2013) A case-study on the accuracy of mass balances for xenobiotics in full-scale wastewater treatment plants. Environ Sci: Proc Impacts 15(4):730–738. doi:10.1039/c3em30884g

    CAS  Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74(7):2089–2094. doi:10.1128/AEM.01450-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Wat Res 44(2):658–668. doi:10.1016/j.watres.2009.12.032

    Article  CAS  Google Scholar 

  • McNamara PJ, Krzmarzick MJ (2013) Triclosan enriches for Dehalococcoides-like Chloroflexi in anaerobic soil at environmentally relevant concentrations. FEMS Microbiol Lett 344(1):48–52. doi:10.1111/1574-6968.12153

    Article  CAS  PubMed  Google Scholar 

  • Mikesell MD, Boyd SA (1985) Reductive dechlorination of the pesticides 2,4-D, 2,4,5-T, and pentachlorophenol in anaerobic sludges. J Environ Qual 14(3):337–340

    Article  CAS  Google Scholar 

  • Miller TR, Colquhoun DR, Halden RU (2010) Identification of wastewater bacteria involved in the degradation of triclocarban and its non-chlorinated congener. J Hazard Mater 183(1–3):766–772. doi:10.1016/j.jhazmat.2010.07.092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Micr 59(11):2692–2697. doi:10.1099/ijs.0.011502-0

    Article  CAS  Google Scholar 

  • Narihiro T, Kaiya S, Futamata H, Hiraishi A (2010) Removal of polychlorinated dioxins by semi-aerobic fed-batch composting with biostimulation of “Dehalococcoides”. J Biosci Bioeng 109(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Natarajan MR, Wu WM, Nye J, Wang H, Bhatnagar L, Jain MK (1996) Dechlorination of polychlorinated biphenyl congeners by an anaerobic microbial consortium. Appl Microbiol Biotechnol 46:673–677

    Article  CAS  Google Scholar 

  • Nelson ED, Do H, Lewis RS, Carr SA (2011) Diurnal variability of pharmaceutical, personal care product, estrogen and alkylphenol concentrations in effluent from a tertiary wastewater treatment facility. Environ Sci Technol 45:1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Krageland C, Seviour RJ, Nielsen JL (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 33(6):969–998. doi:10.1111/j.1574-6976.2009.00186.x

    Article  CAS  PubMed  Google Scholar 

  • Nikel PI, Pérez-Pantoja D, de Lorenzo V (2013) Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloprop-1-ene metabolism by Pseudomonas pavonaceae. Phil Trans R Soc B 368:20120377

    Article  PubMed Central  PubMed  Google Scholar 

  • Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188(6):2262–2274. doi:10.1128/JB.188.6.2262-2274.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nzila A (2013) Update on the cometabolism of organic pollutants by bacteria. Environ Pollut 178:474–482. doi:10.1016/j.envpol.2013.03.042

    Article  CAS  PubMed  Google Scholar 

  • Oba Y, Futagami T, Amachi S (2014) Enrichment of a microbial consortium capable of reductive deiodination of 2,4,6-triiodophenol. J Biosci Bioeng 117(3):310–317. doi:10.1016/j.biosc.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Pham T-T, Proulx S (1997) PCBs and PAHs in the Montreal urban community (Quebec, Canada) wastewater treatment plant and in the effluent plume in the St. Lawrence River Water Res 31(8):1887–1896

    CAS  Google Scholar 

  • Plósz BG, Langford KH, Thomas KV (2012) An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine. Biotechnol Bioeng 109(11):2757–2769. doi:10.1002/bit.24553

    Article  PubMed  Google Scholar 

  • Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664

    Article  CAS  PubMed  Google Scholar 

  • Richardson RE (2013) Genomic insights into organohalide respiration. Curr Opin Biotechnol 24(3):498–505. doi:10.1016/j.copbio.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  • Rodenburg LA, Du S, Lui H, Guo J, Oseagulu N, Fennell DE (2012) Evidence for dechlorination of polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins and -furans in wastewater collection systems in the New York metropolitan area. Environ Sci Technol 46(12):6612–6620. doi:10.1021/es300560q

    Article  CAS  PubMed  Google Scholar 

  • Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Phil Trans R Soc B 368:20120325

    Article  PubMed Central  PubMed  Google Scholar 

  • Samaras VG, Stasinakis AS, Mamais D, Thomaidis NS, Lekkas TD (2013) Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. J Hazard Mater 244–245:259–267. doi:10.1016/j.jhazmat.2012.11.039

    Article  PubMed  Google Scholar 

  • Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68(2):893–900. doi:10.1128/AEM.68.2.893-900.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satsuma K, Masuda M, Sato K (2012) O-Demethylation and successive oxidative dechlorination of methoxychlor by Bradyrhizobium sp. strain 17-4, isolated from river sediment. Appl Environ Microbiol 78(15):5313–5319. doi:10.1128/AEM.01180-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shelton DR, Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48(4):840–848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suarez S, Lema JM, Omil F (2010) Removal of pharmaceutical and personal care products (PCPPs) under nitrifying and denitrifying conditions. Water Res 44:3214–3224

    Article  CAS  PubMed  Google Scholar 

  • Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramos-Hernandez N, Sanford RA, Mesbah NM, Loeffler FE (2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dechlorination of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65:1474–1481

    Article  CAS  PubMed  Google Scholar 

  • Suzuki D, Baba D, Santhi VS, Solomon RDJ, Katayama A (2013) Use of a glass bead-containing liquid medium for efficient production of soil-free culture with polychlorinated biphenyl-dechlorination activity. World J Microbiol Biotechnol 29:1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Tan DT, Arnold WA, Novak PJ (2013) Impact of organic carbon on the biodegradation of estrone in mixed culture systems. Environ Sci Technol 47:12359–12365

    Article  CAS  PubMed  Google Scholar 

  • Tran NH, Urase T, Ngo HH, Hu JY, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Biores Technol 146:721–731

    Article  CAS  Google Scholar 

  • Wagner A, Segler L, Kleinsteuber S, Sawers G, Smidt H, Lechner U (2013) Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi. Phil Trans R Soc B 368:20120317. doi:10.1098.rstb.2012.0317

    Article  PubMed Central  PubMed  Google Scholar 

  • Waller AS, Krajmalnik-Brown R, Löffler FE, Edwards EA (2005) Multiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures. Appl Environ Microbiol 71(12):8257–8264. doi:10.1128/AEM.71.12.8257-8264.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, He J (2013) Phylogenetically distinct bacteria involve extensive dechlorination of Aroclor 1260 in sediment-free cultures. PLoS One 8(3):e59178. doi:10.1371/journal.pone.0059178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Wang X, Poon K, Wang Y, Li S, Liu H, Lin S, Cai Z (2013) Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 92(11):1498–1505. doi:10.1016/j.chemosphere.2013.03.067

    Article  CAS  PubMed  Google Scholar 

  • Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R, Jorgensen BB, Adrian L (2014) Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J 8:383–397. doi:10.1038/ismej.2013.143

    Article  CAS  PubMed  Google Scholar 

  • Watts JEM, Fagervold SK, May HD, Sowers KR (2005) A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151(6):2039–2046. doi:10.1099/mic.0.27819-0

    Article  CAS  PubMed  Google Scholar 

  • Wells GF, Park H-D, Eggleston B, Francis CA, Criddle CS (2011) Fine-scale bacterial community dynamics and the taxa-time relationship within a full-scale activated sludge bioreactor. Water Res 45(17):5476–5488. doi:10.1016/j.watres.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  • Williams WA (1994) Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries. Environ Sci Technol 28:630–635

    Article  CAS  PubMed  Google Scholar 

  • Yan T, LaPara TM, Novak PJ (2006a) The effect of varying levels of bicarbonate on polychlorinated biphenyl dechlorination in Hudson River sediment cultures. Environ Microbiol 8:1288–1298. doi:10.1111/j.1462-2920.2006.001037.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan T, LaPara TM, Novak PJ (2006b) The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microb Ecol 55(2):248–261. doi:10.1111/j.1574-6941.2005.00022.x

    Article  CAS  Google Scholar 

  • Yoshida N, Ye L, Baba D, Katayama A (2009) Reductive dechlorination of polychlorinated biphenyls and dibenzo-p-dioxins in an enrichment culture containing Dehalobacter species. Microbes Environ 24(4):343–346. doi:10.1264/jsme2.ME09132

    Article  PubMed  Google Scholar 

  • Zhang Q-Q, Zhao J-L, Liu Y-S, Li B-G, Ying G-G (2013) Multimedia modeling of the fate of triclosan and triclocarban in the Donjian River Basin, South China and comparison with field data. Environ Sci: Process Impacts 15(11):2142–2152. doi:10.1039/c3em00316g

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark J. Krzmarzick or Paige J. Novak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzmarzick, M.J., Novak, P.J. Removal of chlorinated organic compounds during wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 98, 6233–6242 (2014). https://doi.org/10.1007/s00253-014-5800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5800-x

Keywords

Navigation