Skip to main content
Log in

Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, “green” solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aygan A, Arikan B (2008) A new halo-alkaliphilic thermostable endoglucanase from moderately halophilic Bacillus sp. C14 isolated from Van soda lake. Int J Agric Biol 10:369–374

    CAS  Google Scholar 

  • Becker D, Braet C, Brumer H 3rd, Claeyssens M, Divne C, Fagerstrom BR, Harris M, Jones TA, Kleywegt GJ, Koivula A, Mahdi S, Piens K, Sinnott ML, Stahlberg J, Teeri TT, Underwood M, Wohlfahrt G (2001) Engineering of a glycosidase family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/A224H/L225V/T226A/D262G mutant. Biochem J 356:19–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birbir M, Calli B, Mertoglu B, Bardavid R, Oren A, Ogmen M, Ogan A (2007) Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns. World J Microbiol Biotechnol 23:309–316

    Article  CAS  Google Scholar 

  • Boschker HTS, Cappenberg TE (1994) A sensitive method using 4-methylumbelliferyl-ß-cellobiose as a substrate to measure (1,4)-ß-glucanase activity in sediments. Appl Environ Microbiol 60:3592–3596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chernoglazov VM, Jafarova AN, Klyosov AA (1989) Continuous photometric determination of endo-1,4-ß-d-glucanase (cellulase) activity using 4-methylumbelliferyl-ß-d-cellobioside as a substrate. Anal Biochem 179:186–189

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345

    Article  CAS  Google Scholar 

  • Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4,-beta-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481–487

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Gao ZM, Ruan LW, Chen XL, Zhang YZ, Xu X (2010) A novel salt-tolerant endo-beta-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87:1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, Horikoshi K (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leeuwenhoek 89:211–219

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  PubMed  Google Scholar 

  • Kohring S, Wiegel J, Mayer F (1990) Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl Environ Microbiol 56:3798–3804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins: Struct Funct Bioinforma 47:393–402

    Article  CAS  Google Scholar 

  • Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins: Struct Funct Bioinforma 57:678–683

    Article  CAS  Google Scholar 

  • Lehmann C, Sibilla F, Maugeri Z, Streit WR, de María PD, Martinez R, Schwaneberg U (2012) Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chem 14:2719–2726

    Article  CAS  Google Scholar 

  • Liang C, Fioroni M, Rodriguez-Ropero F, Xue Y, Schwaneberg U, Ma Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53

    Article  CAS  PubMed  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Sandgren M, Gualfetti PJ, Shaw A, Gross LS, Saldajeno M, Day AG, Jones TA, Mitchinson C (2003) Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Sci 12:848–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang S, Baker GA, Ravula S, Jones JE, Zhao H (2012) PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chem 14:2922–2932

    Article  CAS  Google Scholar 

  • Wang W, Malcolm BA (1999) Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange site-directed mutagenesis. BioTechniques 26:680–682

    CAS  PubMed  Google Scholar 

  • Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hsieh Y, Ng C, Chan H, Lin H, Tzeng W, Shyu Y (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzym Microb Technol 44:373–379

    Article  CAS  Google Scholar 

  • Zhang GM, Li SY, Xue YF, Mao LW, Ma YH (2012a) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16:35–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jérôme F (2012b) Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem Eur J 18:1043–1046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Federal Ministry for Education and Research (BMBF), project (FKZ 0315487A), BioEnergie 2021: Forschung für die Nutzung von Biomasse. Furthermore, we thank the Cluster of Excellence “Tailor-Made Fuels from Biomass (TMFB)” for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schwaneberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, C., Bocola, M., Streit, W.R. et al. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Appl Microbiol Biotechnol 98, 5775–5785 (2014). https://doi.org/10.1007/s00253-014-5771-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5771-y

Keywords

Navigation