Skip to main content
Log in

Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Amycolatopsis sp. ATCC 39116 is able to synthesize the important flavoring agent vanillin from cheap natural substrates. The bacterium is therefore of great interest for the industry and used for the fermentative production of vanillin. In order to improve the production of natural vanillin with Amycolatopsis sp. ATCC 39116, the strain has been genetically engineered to optimize the metabolic flux towards the desired product. Extensive metabolic engineering was hitherto hampered, due to the lack of genetic tools like functional promoters and expression vectors. In this study, we report the establishment of a plasmid-based gene expression system for Amycolatopsis sp. ATCC 39116 that allows a further manipulation of the genotype. Four new Escherichia coliAmycolatopsis shuttle vectors harboring different promoter elements were constructed, and the functionality of these regulatory elements was proven by the expression of the reporter gene gusA, encoding a β-glucuronidase. Glucuronidase activity was detected in all plasmid-harboring strains, and remarkable differences in the expression strength of the reporter gene depending on the used promoter were observed. The new expression vectors will promote the further genetic engineering of Amycolatopsis sp. ATCC 39116 to get insight into the metabolic network and to improve the strain for a more efficient industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banh Q, Arenskötter M, Steinbüchel A (2005) Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. Appl Environ Microbiol 71:5077–5084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opin Biotechnol 23:718–726

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215–226

    Article  CAS  PubMed  Google Scholar 

  • Bibb MJ, White J, Ward JM, Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Converti A, Aliakbarian B, Domínguez JM, Vázquez GB, Perego P (2010) Microbial production of biovanillin. Braz J Microbiol 41:519–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis JR, Goodwin LA, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han S, Han J, Pitluck S, Sello JK (2012) Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol 194:2396–2397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156:309–316

    Article  Google Scholar 

  • European Commission (EC) Regulation No 1334/2008 of the european parliament and of the council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending regulation (EC) no 1601/91 of the council, regulations (EC) no 2232/96 and (EC) no 110/2008 and directive 2000/13/EC.

  • Fleige C, Hansen G, Kroll J, Steinbüchel A (2013) Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol 79:81–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin: a bacterial gene of the enoyl- SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 83:8447–8451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Khanna R, Dhingra N, Khanna M, Lal S (1998) Development of an improved cloning vector and transformation system in Amycolatopsis mediterranei (Nocardia mediterranei). J Antibiot 51:161–169

    Article  CAS  PubMed  Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461

    Article  CAS  Google Scholar 

  • Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77:5370–5383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Priefert H, Rabenhorst J, Steinbüchel A (1999) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol 52:820–828

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2006) Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. J Biotechnol 125:369–376

    Article  CAS  PubMed  Google Scholar 

  • Pickens LB, Tang Y, Chooi Y (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236

    Article  CAS  PubMed  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JAC, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72:745–755

    Article  CAS  PubMed  Google Scholar 

  • Power P, Dunne T, Murphy B, Lochlainn LN, Rai D, Borissow C, Rawlings B, Caffrey P (2008) Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. Chem Biol 15:78–86

    Article  CAS  PubMed  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314

    Article  CAS  PubMed  Google Scholar 

  • Priefert H, Achterholt S, Steinbüchel A (2002) Transformation of the Pseudonocardiaceae Amycolatopsis sp. strain HR167 is highly dependent on the physiological state of the cells. Appl Microbiol Biotechnol 58:454–460

    Article  CAS  PubMed  Google Scholar 

  • Rowe CJ, Cortes J, Gaisser S, Staunton J, Leadlay PF (1998) Construction of new vectors for high-level expression in actinomycetes. Gene 216:215–223

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Tuteja D, Dua M, Khanna R, Dhingra N, Khanna M, Kaur H, Saxena DM, Lal R (2000) The importance of homologous recombination in the generation of large deletions in hybrid plasmids in Amycolatopsis mediterranei. Plasmid 43:1–11

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    CAS  PubMed  Google Scholar 

  • Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Bohm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF (2002) Increasing the efficiency of heterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4:417–426

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was financially supported by SYMRISE AG, Holzminden, Germany, which is gratefully acknowledged. We thank Isabelle Van Hamme for technical assistance. We also thank Dr. Andriy Luzhetskyy for providing the plasmid pSETGUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleige, C., Steinbüchel, A. Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 98, 6387–6395 (2014). https://doi.org/10.1007/s00253-014-5724-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5724-5

Keywords

Navigation