Skip to main content
Log in

Evaluation of MALDI-TOF mass spectrometry for identification of environmental yeasts and development of supplementary database

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast identification using traditional methods which employ morphological, physiological, and biochemical characteristics can be considered a hard task as it requires experienced microbiologists and a rigorous control in culture conditions that could implicate in different outcomes. Considering clinical or industrial applications, the fast and accurate identification of microorganisms is a crescent demand. Hence, molecular biology approaches has been extensively used and, more recently, protein profiling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proved to be an even more efficient tool for taxonomic purposes. Nonetheless, concerning to mass spectrometry, data available for the differentiation of yeast species for industrial purpose is limited and reference databases commercially available comprise almost exclusively clinical microorganisms. In this context, studies focusing on environmental isolates are required to extend the existing databases. The development of a supplementary database and the assessment of a commercial database for taxonomic identifications of environmental yeast are the aims of this study. We challenge MALDI-TOF MS to create protein profiles for 845 yeast strains isolated from grape must and 67.7 % of the strains were successfully identified according to previously available manufacturer database. The remaining 32.3 % strains were not identified due to the absence of a reference spectrum. After matching the correct taxon for these strains by using molecular biology approaches, the spectra concerning the missing species were added in a supplementary database. This new library was able to accurately predict unidentified species at first instance by MALDI-TOF MS, proving it is a powerful tool for the identification of environmental yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baleiras Couto MM, Reizinho RG, Duarte FL (2005) Partial 26S rDNA restriction analysis as a tool to characterise non-Saccharomyces yeasts present during red wine fermentations. Int J Food Microbiol 102:49–56

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bautista-Gallego J, Rodríguez-Gómez F, Barrio E, Querol A, Garrido-Fernández A, Arroyo-López FN (2011) Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. Int J Food Microbiol 147:89–96

    Article  CAS  PubMed  Google Scholar 

  • Bel AD, Wybo I, Vandoorslaer K, Rosseel P, Lauwers S, Piérard D (2011) Acceptance criteria for identification results of gram-negative rods by mass spectrometry. J Med Microbiol 60:684–686

    Article  PubMed  Google Scholar 

  • Blattel V, Petri A, Rabenstein A, Kuever J, König H (2013) Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl Microbiol Biotechnol 97:4597–4606

    Article  CAS  PubMed  Google Scholar 

  • Bovo B, Andrighetto C, Carlot M, Corich V, Lombardi A, Giacomini A (2009) Yeast population dynamics during pilot-scale storage of grape marcs for the production of Grappa, a traditional Italian alcoholic beverage. Int J Food Microbiol 129:221–228

    Article  CAS  PubMed  Google Scholar 

  • Cai JP, Roberts IN, Collins MD (1996) Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. Int J Syst Bacteriol 46:542–549

    Article  CAS  PubMed  Google Scholar 

  • Cendejas-Bueno E, Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M (2010) Identification of pathogenic rare yeast species in clinical samples: comparison between phenotypical and molecular methods. J Clin Microbiol 48:1895–1899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen JJ, Dargis R, Hammer M, Justesen US, Nielsen XC, Kemp M (2012) Matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis of Gram-positive, catalase-negative cocci not belonging to the Streptococcus or Enterococcus genus and benefits of database extension. J Clin Microbiol 50:1787–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  PubMed  Google Scholar 

  • Combina M, Elía A, Mercado L, Catania C, Ganga A, Martinez C (2005) Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int J Food Microbiol 99:237–243

    Article  CAS  PubMed  Google Scholar 

  • da Silva GA (1996) The occurrence of killer, sensitive, and neutral yeasts in Brazilian Riesling Italico grape must and the effect of neutral strains on killing behaviour. Appl Microbiol Biotechnol 46:112–121

    Article  PubMed  Google Scholar 

  • Debode J, van Hemelrijck W, Creemers P, Maes M (2013) Effect of fungicides on epiphytic yeasts associated with strawberry. Microbiol Open 2:482–491

    Article  CAS  Google Scholar 

  • Demirev PA, Ho Y-P, Ryzhov V, Fenselau C (1999) Microorganism identification by mass spectrometry and protein database searches. Anal Chem 71:2732–2738

    Article  CAS  PubMed  Google Scholar 

  • Desnos-Ollivier M, Bretagne S, Dromer F, Lortholary O, Dannaoui E (2006) Molecular identification of black-grain mycetoma agents. J Clin Microbiol 44:3517–3523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL (2011) Performance and cost analysis of matrix-assisted laser desorption ionization–time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol 49:1614–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Maro E, Ercolini D, Coppola S (2007) Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. Int J Food Microbiol 117:201–210

    Article  PubMed  Google Scholar 

  • Dias L, Dias S, Sancho T, Stender H, Querol A, Malfeito-Ferreira M, Loureiro V (2003) Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiol 20:567–574

    Article  CAS  Google Scholar 

  • Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.85 rRNA gene and the two ribosomal interna transcribed spacers. Int J Syst Bacteriol 49:329–337

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Espinar MT, Esteve-Zarzoso B, Querol A, Barrio E (2000) RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Anton van Leeuw 78:87–97

    Article  Google Scholar 

  • Frutos RD, Fernández-Espinar MT, Querol A (2004) Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Anton van Leeuw 85:175–185

    Article  Google Scholar 

  • Gayevskiy V, Goddard MR (2012) Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J 6:1281–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goyer M, Lucchi G, Ducoroy P, Vagner O, Bonnin A, Dalle F (2012) Optimization of the preanalytical steps of matrix-assisted laser desorption ionization–time of flight mass spectrometry identification provides a flexible and efficient tool for identification of clinical yeast isolates in medical laboratories. J Clin Microbiol 50:3066–3068

    Article  PubMed Central  PubMed  Google Scholar 

  • Granchi L, Bosco M, Messini A, Vincenzini M (1999) Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J Appl Microbiol 87:949–956

    Article  CAS  PubMed  Google Scholar 

  • Guillamón JM, Sabaté J, Barrio E, Cano J, Querol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169:387–392

    Article  PubMed  Google Scholar 

  • Hendrickx M, Goffinet J-S, Swinne D, Detandt M (2011) Screening of strains of the Candida parapsilosis group of the BCCM/IHEM collection by MALDI-TOF MS. Diagn Microbiol Infect Dis 70:544–548

    Article  CAS  PubMed  Google Scholar 

  • Hierro N, González A, Mas A, Guillamón JM (2006) Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: effect of grape ripeness and cold maceration. FEMS Yeast Res 6:102–111

    Article  CAS  PubMed  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Kreger-van Rij NJW (1984) The yeasts: a taxonomic study, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1994) Synonymy of the yeast genera Wingea and Debaryomyces. Anton van Leeuw 66:337–342

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen.nov., Lindnera gen.nov. and Wickerhamomyces gen.nov. FEMS Yeast Res 8:939–954

    Article  CAS  PubMed  Google Scholar 

  • Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 51:828–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lodder J (1990) Criteria and methods used in classification in the yeast: a taxonomic study. North-Holland, Amsterdam

    Google Scholar 

  • Lv X-C, Huang X-L, Zhang W, Rao P-F, Ni L (2013) Yeast diversity of traditional alcohol fermentation starters for Hong Qu glutinous rice wine brewing, revealed by culture-dependent and culture-independent methods. Food Control 34:183–190

    Article  CAS  Google Scholar 

  • Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl H-G (2009) Matrix-assisted laser desorption ionization–time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P (2013) Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 236:351–364

    Article  CAS  Google Scholar 

  • Muccilli S, Caggia C, Randazzo CL, Restuccia C (2011) Yeast dynamics during the fermentation of brined green olives treated in the field with kaolin and Bordeaux mixture to control the olive fruit fly. Int J Food Microbiol 148:15–22

    Article  CAS  PubMed  Google Scholar 

  • Nagatsuka Y, Kawasaki H, Seki T (2005) Pichia myanmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar. Int J Syst Evol Microbiol 55:1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Pan Y-L, Chow N-H, Chang TC, Chang H-C (2011) Identification of lethal Aspergillus at early growth stages based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 70:344–354

    Article  CAS  PubMed  Google Scholar 

  • Péter G, Tornai-Lehoczki J, Dlauchy D, Vitányi G (2000) Pichia sporocuriosa sp. nov., a new yeast isolated from rambutan. Anton van Leeuw 77:37–42

    Article  Google Scholar 

  • Pham T, Wimalasena T, Box WG, Koivuranta K, Storgårds E, Smart KA, Gibson BR (2011) Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J I Brewing 117:556–568

    Article  CAS  Google Scholar 

  • Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, Iredell JR, Meyer W, Chen SC (2011) Matrix-assisted laser desorption ionization–time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS ONE 6:e25712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian J, Cutler J, Cole R, Cai Y (2008) MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 392:439–449

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gómez F, Arroyo-López FN, López-López A, Bautista-Gallego J, Garrido-Fernández A (2010) Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiol 27:604–612

    Article  PubMed  Google Scholar 

  • Sabate J, Cano J, Esteve-Zarzoso B, Guillamón JM (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157:267–274

    Article  CAS  PubMed  Google Scholar 

  • Šedo O, Voráč A, Zdráhal Z (2011) Optimization of mass spectral features in MALDI-TOF MS profiling of Acinetobacter species. Syst Appl Microbiol 34:30–34

    Article  PubMed  Google Scholar 

  • Settanni L, Sannino C, Francesca N, Guarcello R, Moschetti G (2012) Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. J Bios Bioeng 114:606–614

    Article  CAS  Google Scholar 

  • Sherburn RE, Jenkins RO (2003) A novel and rapid approach to yeast differentiation using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Spectroscopy 17:31–38

    Article  CAS  Google Scholar 

  • Silva GA, Bernardi TL, Schaker PDC, Menegotto M, Valente P (2012) Rapid yeast DNA extraction by boiling and freeze–thawing without using chemical reagents and DNA purification. Braz Arch Biol Techn 55:319–327

    Article  Google Scholar 

  • Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR (2010) Evaluation of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thanh VN, Hai DA, Lachance MA (2003) Issatchenkia hanoiensis, a new yeast species isolated from frass of the litchi fruit borer Conopomorpha cramerella Snellen. FEMS Yeast Res 4:113–117

    Article  CAS  Google Scholar 

  • Ueda-Nishimura K, Mikata K (2001) Reclassification of Pichia scaptomyzae and Pichia galeiformis. Anton van Leeuw 79:371–375

    Article  CAS  Google Scholar 

  • Usbeck JC, Kern CC, Vogel RF, Behr J (2013) Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by matrix-assisted-laser-desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) in response to varying growth conditions. Food Microbiol 36:379–387

    Article  CAS  PubMed  Google Scholar 

  • van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization–time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed Central  PubMed  Google Scholar 

  • Velázquez E, Cruz-Sánchez JM, Rivas-Palá T, Zurdo-Piñeiro JL, Mateos PF, Monte E, Martínez-Molina E, Chordi A (2001) YeastIdent-Food/ProleFood, a new system for the identification of food yeasts based on physiological and biochemical tests. Food Microbiol 18:637–646

    Article  Google Scholar 

  • Villa-Carvajal M, Querol A, Belloch C (2006) Identification of species in the genus Pichia by restriction of the internal transcribed spacers (ITS1 and ITS2) and the 5.8S ribosomal DNA gene. Anton van Leeuw 90:171–181

    Article  CAS  Google Scholar 

  • Wang C, Liu Y (2013) Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China. Food Microbiol 33:172–177

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee E, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wieser A, Schneider L, Jung J, Schubert S (2012) MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gildo Almeida da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agustini, B.C., Silva, L.P., Bloch, C. et al. Evaluation of MALDI-TOF mass spectrometry for identification of environmental yeasts and development of supplementary database. Appl Microbiol Biotechnol 98, 5645–5654 (2014). https://doi.org/10.1007/s00253-014-5686-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5686-7

Keywords

Navigation