Skip to main content
Log in

Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of surfactin and mycosubtilin as an eco-friendly alternative to control lettuce downy mildew caused by the obligate pathogen Bremia lactucae was investigated. Preliminary ecotoxicity evaluations obtained from three different tests revealed the rather low toxicity of these lipopeptides separately or in combination. The EC50 (concentration estimated to cause a 50 % response by the exposed test organisms) was about 100 mg L−1 in Microtox assays and 6 mg L−1 in Daphnia magna immobilization tests for mycosubtilin and 125 mg L−1 and 25 mg L−1 for surfactin, respectively. The toxicity of the mixture mycosubtilin/surfactin (1:1, w/w) was close to that obtained with mycosubtilin alone. In addition, the very low phytotoxic effect of these lipopeptides has been observed on germination and root growth of garden cress Lepidium sativum L. While a surfactin treatment did not influence the development of B. lactucae on lettuce plantlets, treatment with 100 mg L−1 of mycosubtilin produced about seven times more healthy plantlets than the control samples, indicating that mycosubtilin strongly reduced the development of B. lactucae. The mixture mycosubtilin/surfactin (50:50 mg L−1) gave the same result on B. lactucae development as 100 mg L−1 of mycosubtilin. The results of ecotoxicity as well as those obtained in biocontrol experiments indicated that the presence of surfactin enhances the biological activities of mycosubtilin. Mycosubtilin and surfactin were thus found to be efficient compounds against lettuce downy mildew, with low toxicity compared to the toxicity values of chemical pesticides. This is the first time that Bacillus lipopeptides have been tested in vivo against an obligate pathogen and that ecotoxic values have been given for surfactin and mycosubtilin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174

    Article  CAS  PubMed  Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63

    Article  PubMed Central  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Battaglin W, Fairchild J (2002) Potential toxicity of pesticides measured in Midwestern streams to aquatic organisms. Water Sci Technol 45:95–103

    CAS  PubMed  Google Scholar 

  • Béchet M, Caradec T, Hussein W, Abderrahmani A, Chollet M, Leclère V, Dubois T, Lereclus D, Pupin M, Jacques P (2012) Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol 95:593–600

    Article  PubMed  Google Scholar 

  • Béchet M, Castéra-Guy J, Guez JS, Chihib NE, Coucheney F, Coutte F, Fickers P, Leclère V, Wathelet B, Jacques P (2013) Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour Technol 145:264–270

    Article  PubMed  Google Scholar 

  • Brown S, Koike ST, Ochoa OE, Laemmlen F, Michelmore RW (2004) Insensitivity to the fungicide fosetyl-aluminium in California isolates of the lettuce downy mildew pathogen Bremia lactucae. Plant Dis 88:502–508

    Article  CAS  Google Scholar 

  • Cartwright J (2007) Big stars have weather too. IOP Publishing PhysicsWeb. http://physicsweb.org/articles/news/11/6/16/1 Accessed 26 June 2007

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    Article  CAS  PubMed  Google Scholar 

  • Chenikher S, Guez JS, Coutte F, Pekpe M, Jacques P, Cassar JP (2010) Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam overflow. Process Biochem 45:1800–1807

    Article  CAS  Google Scholar 

  • Cohen Y, Rubin AE, Kilfin G (2010) Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). Eur J Plant Pathol 126:553–573

    Article  CAS  Google Scholar 

  • Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P (2010a) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 109:480–491

    CAS  PubMed  Google Scholar 

  • Coutte F, Lecouturier D, Ait Yahia S, Leclère V, Béchet M, Jacques P, Dhulster P (2010b) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507

    Google Scholar 

  • Coutte F, Lecouturier D, Leclère V, Béchet M, Jacques P, Dhulster P (2013) New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem 48:25–32

    Article  CAS  Google Scholar 

  • Fickers P (2012) Antibiotic compounds from Bacillus: why are they so amazing? Am J Biochem Biotechnol 8:40–46

    Article  Google Scholar 

  • Fickers P, Leclère V, Guez JS, Béchet M, Coucheney F, Joris B, Jacques P (2008) Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res Microbiol 159:449–457

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Guez JS, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 75:4636–4640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 3:264–274

    Article  Google Scholar 

  • Grangemard I, Wallach J, Peypoux F (1999) Evidence of surfactin hydrolysis by a bacterial endoprotease. Biotechnol Lett 21:241–244

    Article  CAS  Google Scholar 

  • Guez JS, Müller CH, Danze PM, Büchs J, Jacques P (2008) Respiration Activity MOnitoring System (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol 134:121–126

    Google Scholar 

  • Günther P, Pestemer W (1990) Risk assessment for selected xenobiotics by bioassay methods with higher plants. Environ Manag 14:381–388

    Article  Google Scholar 

  • Hamley I, Dehsorkhi A, Jauregi P, Seitsonen J, Ruokolainen J, Coutte F, Chataigné G, Jacques P (2013) Self-assembly of three bacterially derived bioactive lipopeptides. Soft Matter 9:9572–9578

    Article  CAS  Google Scholar 

  • Hbid C (1996) Contribution à l’étude de la relation entre la structure des lipopeptides de Bacillus subtilis et leurs activités hémolytique et antifongique. Ph.D thesis, University of Liège, Belgium

  • Henry G, Deleu M, Jourdan E, Thonart P, Ongena M (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13:1824–1837

    Article  CAS  PubMed  Google Scholar 

  • Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD (2012) Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Aci USA 109:13082–13087

    Article  CAS  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberon-Chavez G (ed) Biosurfactants microbiology monographs, vol 20. Springer-Verlag, Heidelberg, pp 57–91

    Google Scholar 

  • Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl Biochem Biotechnol 77:223–233

    Article  Google Scholar 

  • Jauregi P, Coutte F, Catiau L, Lecouturier D, Jacques P (2013) Micelle size characterization of lipopeptides produced by Bacillus subtilis and their recovery by the two-step ultrafiltration process. Sep Purif Technol 104:175–182

    Article  CAS  Google Scholar 

  • Johnson BT (2005) Microtox acute toxicity test. In: Blaise C, Ferard J-F (eds) Small-scale freshwater toxicity investigations, toxicity test methods, vol 1, Springer. Dordrecht, The Netherlands, pp 69–105

    Chapter  Google Scholar 

  • Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013) Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS ONE 8(1):e54092. doi:10.1371/journal.pone.0054092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kungolos A, Samaras P, Kipopoulou AM, Zoumboulis A, Sakellaropoulos GP (1999) Interactive toxic effects of agrochemicals on aquatic organisms. Water Sci Technol 40:357–364

    Article  CAS  Google Scholar 

  • Lebeda A, Sedlářová M, Petřivalský M, Prokopová J (2008) Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. Eur J Plant Pathol 122:71–89

    Article  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG 100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 8:4577–4584

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  PubMed  Google Scholar 

  • Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Moewus F (1949) Der Kressewurzeltest, ein neuer quantitativer Wuchsstofftest. Biol Zentralbl 68:118–139

    CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1995) Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, Bacillus subtilis RB14, in solid-state fermentation. J Ferment Bioeng 80:517–519

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J-L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 4:1084–1090

    Article  Google Scholar 

  • Pandard P, Devillers J, Charissou AM, Poulsen V, Jourdain MJ, Férard JF, Grand C, Bispo A (2006) Selecting a battery of bioassays for ecotoxicological characterization of wastes. Sci Total Environ 363:114–125

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292

    Article  CAS  PubMed  Google Scholar 

  • Stock D, Holloway PJ (1993) Possible mechanisms for surfactant-induced foliar uptake of agrochemicals. Pest Manag Sci 38:165–177

    Article  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Indust Biotechnol 2:194–208

    Article  Google Scholar 

  • Thimon L, Peypoux F, Maget-Dana R, Roux B, Michel G (1992) Interactions of bioactives, iturin A and surfactin from Bacillus subtilis. Biotechnol Appl Biochem 16:144–151

    CAS  PubMed  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer Science, Dordrecht, pp 39–66

    Google Scholar 

  • Vighi M, Migliorati S, Monti GS (2009) Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). I: QSAR equation for narcotics and polarnarcotics. Ecotox Environ Safe 72:154–161

    Article  CAS  Google Scholar 

  • Villa S, Migliorati S, Monti GS, Vighi M (2012) Toxicity on the luminescent bacterium Vibrio fischeri (Berjerinck) II: response to complex mixtures of heterogeneous chemicals at low levels of individual components. Ecotox Environ Safe 86:93–100

    Article  CAS  Google Scholar 

  • Yu G, Sinclair J, Hartman G, Bertagnolli B (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem.34:955–963

Download references

Acknowledgments

This work was supported by the Université Lille 1 Sciences et Technologies and the European Funds of INTERREG IV PhytoBio Project. We acknowledge Corinne Boistel, Laurent Bonneau, Bertrand Fertin, and Dr Gabrielle Chataigné from the Laboratory ProBioGEM of the Université Lille 1 for their precious help in lipopeptide production, purification, and characterization by LC-MS-MS. We also thank Dr Ellen Pauwelyn for her precious advices on B. lactucae maintenance and Mr John Clarke and Mr William Everett for the re-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jacques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deravel, J., Lemière, S., Coutte, F. et al. Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl Microbiol Biotechnol 98, 6255–6264 (2014). https://doi.org/10.1007/s00253-014-5663-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5663-1

Keywords

Navigation