Skip to main content
Log in

A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H2O2 could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agervald Å, Baebprasert W, Zhang X, Incharoensakdi A, Lindblad P, Stensjö K (2010) The CyAbrB transcription factor CalA regulates the iron superoxide dismutase in Nostoc sp. strain PCC 7120. Environ Microbiol 12:2826–2837

    PubMed  CAS  Google Scholar 

  • Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90:1267–1270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Banerjee M, Ballal A, Apte SK (2012) Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium Anabaena PCC 7120 from oxidative stress. Environ Microbiol 14:2891–2900

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  • Bernroitner M, Zamocky M, Furtmüller PG, Peschek GA, Obinger C (2009) Occurrence, phylogeny, structure, and function of catalase and peroxidases in cyanobacteria. J Exp Bot 60:423–440

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chiancone C, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800:798–805

    Article  PubMed  CAS  Google Scholar 

  • Ekman E, Sandh G, Nenninger A, Oliveira P, Stensjö K (2014) Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme. Environ Microbiol. doi:10.1111/1462-2920.12233

  • Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT (2004) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol 134:275–285

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fujii T, Yokoyama E, Inoue K, Sakurai H (1990) The sites of electron donation of photosystem I to methyl viologen. Biochim Biophys Acta 1015:41–48

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Jeanjean R, Latifi A, Matthijs HCP, Havaux M (2008) The PsaE subunit of photosystem I prevents light-induced formation of reduced oxygen species in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 177:308–316

    Article  CAS  Google Scholar 

  • Kim MD, Kim KYH, Kwon KSY, Yun DJ, Kwak SS, Lee HS (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiol Plant 140:153–162

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  PubMed  CAS  Google Scholar 

  • Li T, Huang X, Zhou R, Liu Y, Li B, Nomura C, Zhao J (2002) Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena PCC 7120. J Bacteriol 184:5096–5103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    Article  PubMed  CAS  Google Scholar 

  • Narayan OP, Kumari N, Rai LC (2010) Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses. Biochem Biophys Res Commun 394:163–169

    Article  PubMed  CAS  Google Scholar 

  • Nomura CT, Toshio S, Bryant DA (2006) Roles of heme-copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002. Arch Microbiol 185:471–479

    Article  PubMed  CAS  Google Scholar 

  • Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensjö K, Wright PC (2009) Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. J Proteome Res 8:187–189

    Article  PubMed  CAS  Google Scholar 

  • Perelman A, Uzan A, Hacohen D, Schwarz R (2003) Oxidative stress in Synechococcus sp. strain PCC 7942: various mechanisms for detoxification with different physiological roles. J Bacteriol 185:3654–3660

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pérez-Pérez ME, Mata-Cabana A, Sánchez-Riego AM, Lindahl M, Florencio FJ (2009) A comprehensive analysis of the peroxiredoxin reduction system in the cyanobacterium Synechocystis sp. strain PCC 6803 reveals that all five peroxiredoxins are thioredoxin dependent. J Bacteriol 191:7477–7489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pilon M, Ravet K, Tapken W (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta 1807:980–998

    Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G (2007) Comparative analysis of cyanobacterial superoxide dismutases to discriminate canonical form. BMC Genomics 8:435

    Article  PubMed Central  PubMed  Google Scholar 

  • Raghavan PS, Rajaram H, Apte SK (2011) Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC 7120. Plant Mol Biol 77:407–417

    Article  PubMed  CAS  Google Scholar 

  • Regelsberger G, Atzenhofer W, Rüker F, Peschek GA, Jakopitsch C, Paumann M, Furtmüller PG, Obinger C (2002) Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. J Biol Chem 277:43615–43622

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Ross C, Santiago-Vázquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcyctis aeruginosa. Aquat Toxicol 78:66–73

    Article  PubMed  CAS  Google Scholar 

  • Simon FW, Grzebyk D, Schofield O (2005) The role and evolution of superoxide dismutases in algae. J Phycol 41:453–465

    Article  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116:1593–1602

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tichy M, Vermaas W (1999) In vivo role of catalase–peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181:1875–1882

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tözüm SRD, Gallon JR (1979) The effects of methyl viologen on Gloeocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen. J Gen Microbiol 111:313–326

    Article  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta 1817:209–217

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Mingjia H, Xiufeng L, Yang G, Qingyu W (2007) Identification and biochemical properties of Dps (starvation-induced DNA binding protein) from cyanobacterium Anabaena sp. PCC 7120. IUBMB Life 59:675–681

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Guo Q, Zhao J (2007) A membrane associated Mn-superoxide dismutase protects the photosynthetic apparatus and nitrogenase from oxidative damage in the cyanobacterium Anabaena PCC 7120. Plant Cell Physiol 48:563–572

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

MLD acknowledges the financial support from Department of Science and Technology (DST), Government of India in the form of Senior Research Fellowship (Inspire programme). KS and PL acknowledge the financial support by the Swedish Energy Agency and KA Wallenberg Foundation. JB is grateful to DST for providing financial support and Department of Biotechnology for overseas research associateship and State Biotech hub research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Bhattacharya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 91.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moirangthem, L.D., Bhattacharya, S., Stensjö, K. et al. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133. Appl Microbiol Biotechnol 98, 3809–3818 (2014). https://doi.org/10.1007/s00253-013-5443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5443-3

Keywords

Navigation