Skip to main content
Log in

Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alquéres SM, Oliveira JH, Nogueira EM, Guedes HV, Oliveira PL, Câmara F, Baldani JI, Martins OB (2010) Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus. Arch Microbiol 192:835–841

    Article  PubMed  Google Scholar 

  • Atzenhofer W, Regelsberger G, Jacob U, Peschek G, Furtmüller P, Huber R, Obinger C (2002) The 2.0 Å resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase. J Mol Biol 321:479–489

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beyer Jr WF, Fridovich I (1987) Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry 26:1251–1257

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Brock TD (1973) Evolutionary and ecological aspects of cyanophytes: In: Carr NG, Whitaton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 487–500

  • Campbell WS, Laudenbach DE (1995) Characterization of four superoxide dismutase genes from a filamentous cyanobacterium. J Bacteriol 177:964–972

    PubMed  CAS  Google Scholar 

  • Castenholz RW (1988) Culturing of cyanobacteria. Methods Enzymol 167:68–93

    Article  CAS  Google Scholar 

  • Chaurasia AK, Parasnis A, Apte SK (2008) An integrative expression vector for strain improvement and environmental applications of nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120. J Microbiol Methods 73:133–141

    Article  PubMed  CAS  Google Scholar 

  • Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754

    Article  PubMed  CAS  Google Scholar 

  • Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179:1998–2005

    PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2 ), superoxide dismutase and related matters. J Biol Chem 272:18515–18517

    Article  PubMed  CAS  Google Scholar 

  • Gruber MY, Glick BR, Thompson JE (1990) Cloned MnSod reduces oxidative stress in Escherichia coli and Anacystis nidulans. Proc Natl Acad Sci USA 87:2608–2612

    Article  PubMed  CAS  Google Scholar 

  • Haaker H, Klugkist J (1987) The bioenergetics of electron transport to nitrogenase. FEMS Microbiol Rev 46:57–71

    Article  CAS  Google Scholar 

  • Herbert SK, Samson G, Fork DC, Laudenbach DE (1992) Characterization of damage to photosystem I and II in a cyanobacterium lacking detectable FeSod activity. Proc Natl Acad Sci USA 89:8716–8720

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Suh KH (2005) Light-dependent expression of superoxide dismutase from Synechocystis sp. Strain PCC6803. Arch Microbiol 183:218–223

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  PubMed  CAS  Google Scholar 

  • Li T, Huang X, Zhou R, Liu Y, Li B, Nomura C, Zhao J (2002) Differential expression and localization of Mn and Fe superoxide dismutases in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184:5096–5103

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhou R, Zhao J (2000) Molecular cloning and sequencing of the sodB gene from a heterocystous cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 149:1248–1252

    Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Priya B, Premanandh J, Dhanalakshmi RT, Seethalakshmi T, Uma L, Prabaharan D, Subramanian G (2007) Comparative analysis of cyanobacterial superoxide dismutases to discriminate cannonical form. BMC Genomics 8:435

    Article  PubMed  Google Scholar 

  • Regelsberger G, Atzenhofer W, Ruker F, Peschek GA, Jakopitsch C, Paumann M, Furtmüller PG, Obinger C (2002) Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. J Biol Chem 277:43615–43622

    Article  PubMed  CAS  Google Scholar 

  • Regelsberger G, Laaha U, Dietmann D, Rüker F, Canini A, Grilli-Caiola M, Furtmüller PG, Jakopitsch C, Peschek GA, Obinger C (2004) The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression and biochemical characterization. J Biol Chem 279:44384–44393

    Article  PubMed  CAS  Google Scholar 

  • Stewart WDP (1980) Some aspects of structure and function in nitrogen-fixing cyanobacteria. Annu Rev Microbiol 34:497–536

    Article  PubMed  CAS  Google Scholar 

  • Takeshima Y, Takatsugu N, Sugiura M, Hagiwara H (1994) High-level expression of human superoxide dismutase in cyanobacterium Anacystis nidulans 6301. Proc Natl Acad Sci USA 91:9685–9689

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116:1593–1602

    Article  PubMed  CAS  Google Scholar 

  • Walsby AE (1986) Prochlorophytes: origin of chloroplasts. Nature 320:212

    Article  Google Scholar 

  • Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Guo Q, Zhao J (2007) A membrane-associated Mn-superoxide dismutase protects the photosynthetic apparatus and nitrogenase from oxidative damage in the cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 48:563–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Rajaram.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 103 kb)

Supplementary material 2 (JPEG 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, P.S., Rajaram, H. & Apte, S.K. Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120. Plant Mol Biol 77, 407 (2011). https://doi.org/10.1007/s11103-011-9821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-011-9821-x

Keywords

Navigation