Skip to main content

Advertisement

Log in

New insights on nucleoside 2′-deoxyribosyltransferases: a versatile Biocatalyst for one-pot one-step synthesis of nucleoside analogs

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, glycosiltransferases have arisen as standard biocatalysts for the enzymatic synthesis of a wide variety of natural and non-natural nucleosides. Such enzymatic synthesis of nucleoside analogs catalyzed by nucleoside phosphorylases and 2′-deoxyribosyltransferases (NDTs) has demonstrated to be an efficient alternative to the traditional multistep chemical methods, since chemical glycosylation reactions include several protection–deprotection steps. This minireview exhaustively covers literature reports on this topic with the final aim of presenting NDTs as an efficient option to nucleoside phosphorylases for the synthesis of natural and non-natural nucleosides. Detailed comments about structure and catalytic mechanism of described NDTs, as well as their possible biological role, substrate specificity, and advances in detection of new enzyme specificities towards different non-natural nucleoside synthesis are included. In addition, optimization of enzymatic transglycosylation reactions and their application in the synthesis of natural and non-natural nucleosides have been described. Finally, immobilization of NDTs is shown as a practical procedure which leads to the preparation of very interesting biocatalysts applicable to industrial nucleoside synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anand R, Kaminski PA, Ealick SE (2004) Structures of purine 2′-deoxyribosyltransferase, substrate complexes, and the ribosylated enzyme intermediate at 2.0 Å resolution. Biochemistry 43:2384–2393

    Article  CAS  Google Scholar 

  • Armstrong SR, Cook WJ, Short SA, Ealick SE (1996) Crystal structures of nucleoside 2′-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site. Structure 4:97–107

    Article  CAS  Google Scholar 

  • Becker J, Brendel M (1996) Rapid purification and characterization of two distinct N-deoxyribosyltransferases of Lactobacillus leichmannii. Biol Chem H-S 377:357–362

    CAS  Google Scholar 

  • Berti PJ, McCann JA (2006) Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem Rev 106:506–555

    Article  CAS  Google Scholar 

  • Betbeder D, Hutchinson DW, Richards AO (1989) The stereoselective enzymatic synthesis of 9-beta-d-2′-deoxyribofuranosyl 1-deazapurine. Nucleic Acids Res 17:4217–4222

    Article  CAS  Google Scholar 

  • Bonate PL, Arthaud L, Cantrell WR, Stephenson K, Secrist JA, Weitman S (2006) Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 5:855–863

    Article  CAS  Google Scholar 

  • Boryski J (2008) Reactions of transglycosylation in the nucleoside chemistry. Curr Org Chem 12:309–325

    Article  CAS  Google Scholar 

  • Bosch J, Robien MA, Mehlin C, Boni E, Riechers A, Buckner FS, Van Voorhis WC, Myler PJ, Worthey EA, DeTitta G, Luft JR, Lauricella A, Gulde S, Anderson LA, Kalyuzhniy O, Neely HM, Ross J, Earnest TN, Soltis M, Schoenfeld L, Zucker F, Merritt EA, Fan E, Verlinde CLMJ, Hol WGJ (2006) Using fragment cocktail crystallography to assist inhibitor design of Trypanosoma brucei nucleoside 2-deoxyribosyltransferase. J Med Chem 49:5939–5946

    Article  CAS  Google Scholar 

  • Cardinaud R, Holguin J (1979) Nucleoside deoxyribosyltransferase-II from Lactobacillus helveticus. Substrate specificity studied. Pyrimidine bases as acceptors. Biochim Biophys Acta 568:339–347

    Article  CAS  Google Scholar 

  • Carson DA, Wasson DB (1988) Synthesis of 2′,3′-dideoxynucleosides by enzymatic trans-glycosylation. Biochem Biophys Res Commun 155:829–834

    Article  CAS  Google Scholar 

  • Cook WJ, Short SA, Ealick SE (1990) Crystallization and preliminary X-ray investigation of recombinant Lactobacillus leichmannii nucleoside deoxyribosyltransferase. J Biol Chem 265:2682–2683

    CAS  Google Scholar 

  • Chawdhri RF, Hutchinson DW, Richards AOL (1991) Nucleoside deoxyribosyltransferase and inosine phosphorylase activity in lactic acid bacteria. Arch Microbiol 155:409–411

    Article  CAS  Google Scholar 

  • Danzin C, Cardinaud R (1974) Deoxyribosyl transfer catalysis with trans-N-deoxyribosylase. Kinetic studies of purine-to-purine trans-N-deoxyribosylase. Eur J Biochem 48:255–262

    Article  CAS  Google Scholar 

  • Danzin C, Cardinaud R (1976) Deoxyribosyl transfer catalysis with trans-N-deoxyribosylase. Kinetic study of purine (pyrimidine) to pyrimidine (purine) trans-N-deoxyribosylase. Eur J Biochem 62:365–372

    Article  CAS  Google Scholar 

  • De Clercq E (2005a) Antiviral drug discovery and development: where chemistry meets with biomedicine. Antivir Res 67:56–75

    Article  Google Scholar 

  • De Clercq E (2005b) Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol 8:552–560

    Article  Google Scholar 

  • De Clercq E (2009) The history of antiretrovirals: key discoveries over the past 25 years. Rev Med Virol 19:287–299

    Article  Google Scholar 

  • De Clercq E (2010a) Highlights in the discovery of antiviral drugs: a personal retrospective. J Med Chem 53:1438–1450

    Article  Google Scholar 

  • De Clercq E (2010b) In search of a selective therapy of viral infections. Antivir Res 85:19–24

    Article  Google Scholar 

  • Doddapaneni K, Zahurancik W, Haushalter A, Yuan C, Jackman J, Wu Z (2011) RCL hydrolyzes 2′-deoxyribonucleoside 5′-monophosphate via formation of a reaction intermediate. Biochemistry 50:4712–4719

    Article  CAS  Google Scholar 

  • Fernández-Lucas J, Acebal C, Sinisterra JV, Arroyo M, de la Mata I (2010) Lactobacillus reuteri 2′-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides. Appl Environ Microbiol 76:1462–1470

    Article  Google Scholar 

  • Fernández-Lucas J, Condezo LA, Martinez-Lagos F, Sinisterra JV (2007) Synthesis of 2′-deoxyribosylnucleosides using new 2′-deoxyribosyltransferase microorganism producers. Enzyme Microb Technol 40:1147–1155

    Article  Google Scholar 

  • Fernández-Lucas J, Condezo LA, Quezada MA, Sinisterra JV (2008) Low-temperature synthesis of 2′-deoxyadenosine using immobilized psychrotrophic microorganisms. Biotechnol Bioeng 100:213–222

    Article  Google Scholar 

  • Fernández-Lucas J, Fresco-Taboada A, Acebal C, de la Mata I, Arroyo M (2011) Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from Lactobacillus reuteri. Appl Microbiol Biotechnol 91:317–327

    Article  Google Scholar 

  • Fernández-Lucas J, Fresco-Taboada A, de la Mata I, Arroyo M (2012a) One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media. Bioresour Technol 115:63–69

    Article  Google Scholar 

  • Fernández-Lucas J, Harris R, de la Mata I, Acebal C, Mata I, Heras A, Arroyo M (2012b) New biocatalyst with 2′-deoxyribosyltransferase activity immobilized over magnetic chitosan particles. Spanish patent, application number P201200390

  • Freeman GA, Shaver SR, Rideout JL, Short SA (1995) 2-Amino-9-(3-azido-2,3-dideoxy-beta-d-erythro-pentofuranosyl)-6-substituted-9H-purines: synthesis and anti-HIV activity. Bioorg Med Chem 3:447–458

    Article  CAS  Google Scholar 

  • Gaevaya L (1980a) Immobilisation of N-deoxyribosyltransferase. Chem Abs 93:21636

    Google Scholar 

  • Gaevaya L (1980b) Immobilisation of N-deoxyribosyltransferase. Trans Tallinn Polytechnic Institute 465:75–79

    Google Scholar 

  • Gandhi V, Plunkett W (2006) Clofarabine and nelarabine: two new purine nucleoside analogs. Curr Opin Oncol 18:584–590

    Article  CAS  Google Scholar 

  • Ghiorghi YK, Zeller KI, Dang CV, Kaminski PA (2007) The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5′-monophosphate N-glycosidase. J Biol Chem 282:8150–8156

    Article  CAS  Google Scholar 

  • Hammer-Jespersen K (1983) Nucleoside catabolism. Academic, New York

    Google Scholar 

  • Herdewijn P (2008) Modified nucleosides in biochemistry, biotechnology and biomedicine. Wiley, Weinheim

    Google Scholar 

  • Hicks N, Hutchinson DW (1994) Synthesis of nucleoside analogs using immobilized N-deoxyribosyltransferases. Biocatalysis 11:1–7

    Article  CAS  Google Scholar 

  • Holguin J, Cardinaud R (1975) Trans-N-deoxyribosylase: purification by affinity chromatography and characterization. Eur J Biochem 54:505–514

    Article  CAS  Google Scholar 

  • Holguin J, Cardinaud R, Salemink CA (1975) Trans-N-deoxyribosylase: substrate specificity studies. Eur J Biochem 54:515–520

    Article  CAS  Google Scholar 

  • Huang MC, Montgomery JA, Thorpe MC, Stewart EL, Secrist JA, Blakley RL (1983) Formation of 3-(2′-deoxyribofuranosyl) and 9-(2′-deoxyribofuranosyl) nucleosides of 8-substituted purines by nucleoside deoxyribosyltransferase. Arch Biochem Biophys 222:133–144

    Article  CAS  Google Scholar 

  • Hutchinson DW, Betbeder D (1990) The enzymatic synthesis of imidazole deoxynucleosides: 1-β-d-2′-deoxyribofuranosyl-5-aminoimidazole and 1-β-d-2′-deoxyribofuranosylbenzimidazole. Nucleos Nucleot Nucl 9:569–577

    Article  Google Scholar 

  • Kaminski PA (2002) Functional cloning, heterologous expression, and purification of two different N-deoxyribosyltransferases from Lactobacillus helveticus. J Biol Chem 277:14400–14407

    Article  CAS  Google Scholar 

  • Kaminski PA, Dacher P, Dugue L, Pochet S (2008) In vivo reshaping the catalytic site of nucleoside 2′-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution. J Biol Chem 283:20053–20059

    Article  CAS  Google Scholar 

  • Kaminski PA, Labesse G (2013) Phosphodeoxyribosyltransferases: designed enzymes for deoxyribonucleotide synthesis. J Biol Chem. doi:10.1074/jbc.M112.446492

  • Kilstrup M, Hammer K, Jensen PR, Martinussen J (2005) Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590

    Article  CAS  Google Scholar 

  • Lewkowicz ES, Iribarren AM (2006) Nucleoside phosphorylases. Curr Org Chem 10:1197–1215

    Article  CAS  Google Scholar 

  • Li N, Smith TJ, Zong M-H (2010) Biocatalytic transformation of nucleoside derivatives. Biotechnol Adv 28:348–366

    Article  CAS  Google Scholar 

  • Lin Y, Zhang W, Zhu F, Su J, Fang D, Yang Y, Zhang G, Xie L, Zhang R, Wang H (2011) Subcellular localization of N-deoxyribosyltransferase in Lactobacillus fermentum: cell surface association of an intracellular nucleotide metabolic enzyme. FEMS Microbiol Lett 323:132–141

    Article  CAS  Google Scholar 

  • Mathé C, Gosselin G (2006) L-Nucleoside enantiomers as antivirals drugs: a mini-review. Antivir Res 71:276–281

    Article  Google Scholar 

  • McCarter J, Withers S (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  CAS  Google Scholar 

  • Médici R, Lewkowicz ES, Iribarren AM (2006) Microbial synthesis of 2,6-diaminopurine nucleosides. J Mol Catal B Enzym 39:40–44

    Article  Google Scholar 

  • Mehellou Y, De Clercq E (2009) Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 53:521–538

    Article  Google Scholar 

  • Mikhailopulo IA (2007) Biotechnology of nucleic acid constituents—state of the art and perspectives. Curr Org Chem 11:317–333

    Article  CAS  Google Scholar 

  • Mikhailopulo IA, Miroshnikov AI (2010) New trends in nucleoside biotechnology. Acta Naturae 71:276–281

    Google Scholar 

  • Muller M, Hutchinson LK, Guengerich FP (1996) Addition of deoxyribose to guanine and modified DNA based by Lactobacillus helveticus trans-N-deoxyribosylase. Chem Res Toxicol 9:1140–1144

    Article  CAS  Google Scholar 

  • Ogawa J, Shimizu S (1999) Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol 17:13–20

    Article  CAS  Google Scholar 

  • Okuyama K, Shibuya S, Hamamoto T, Noguchi T (2003) Enzymatic synthesis of 2′-deoxyguanosine with nucleoside deoxyribosyltransferase-II. Biosci Biotechnol Biochem 67:989–995

    Article  CAS  Google Scholar 

  • Plunkett W, Gandhi V (2001) Purine and pyrimidine nucleoside analogs. In: Giaccone G, Schilsky R, Sondel P (eds) Cancer chemotherapy and biological response modifiers. Annual 19. Elsevier, Amsterdam, pp 21–45

    Google Scholar 

  • Pochet S, Dugue L, Meier A, Marliere P (1995) Enzymatic synthesis of 1-(2-deoxy-beta-d-ribofuranosyl)imidazole-4-carboxamide, a simplified DNA building block. Bioorg Med Chem Lett 5:1679–1684

    Article  CAS  Google Scholar 

  • Porter DJ, Short SA (1995) Nucleoside 2-deoxyribosyltransferase. Pre-steady-state kinetic analysis of native enzyme and mutant enzyme with an alanyl residue replacing Glu-98. J Biol Chem 270:15557–15562

    Article  CAS  Google Scholar 

  • Porter DJT, Merrill BM, Short SA (1995) Identification of the active site nucleophile in nucleoside 2-deoxyribosyltransferase as glutamic acid 98. J Biol Chem 270:15551–15556

    Article  CAS  Google Scholar 

  • Pugmire MJ, Ealick SE (2002) Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem J 361:1–25

    Article  CAS  Google Scholar 

  • Robak T, Lech-Maranda E, Korycka A, Robak E (2006) Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Curr Med Chem 13:3165–3189

    Article  CAS  Google Scholar 

  • Rocchietti S, Ubiali D, Terreni M, Albertini AM, Fernandez-Lafuente R, Guisan JM, Pregnolato M (2004) Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylases from Bacillus subtilis. Biomacromolecules 5:2195–2200

    Article  CAS  Google Scholar 

  • Schnetz-Boutaud NC, Chapeau M-C, Marnett LJ (2001) Enzymatic synthesis of M1G-deoxyribose. Wiley, New York

    Google Scholar 

  • Short S, Armstrong S, Ealick S, Porter D (1996) Active site amino acids that participate in the catalytic mechanism of nucleoside 2'-deoxyribosyltransferase. J Biol Chem 271:4978–4987

    Google Scholar 

  • Slater MJ, Gowrie C, Freeman GA, Short SA (1996) Enzymatic synthesis and antiviral activity of 2′-deoxy-2′-fluoro-ribavirin. Bioorg Med Chem Lett 6:2787–2790

    Article  CAS  Google Scholar 

  • Steenkamp DF, Halbich TJ (1992) Substrate specificity of the purine-2′-deoxyribonucleosidase of Crithidia luciliae. Biochem J 287:125–129

    CAS  Google Scholar 

  • Steenkamp DJ (1991) The purine-2-deoxyribonucleosidase from Crithidia luculiae. Eur J Biochem 197:431–439

    Article  CAS  Google Scholar 

  • Trelles JA, Fernández M, Lewkowicz ES, Iribarren AM, Sinisterra JV (2003) Purine nucleoside synthesis from uridine using immobilised Enterobacter gergoviae CECT 875 whole cells. Tetrahedron Lett 44:2605–2609

    Article  CAS  Google Scholar 

  • Ubiali D, Rocchietti S, Scaramozzino F, Terreni M, Albertini AM, Fernandez-Lafuente R, Guisan JM, Pregnolato M (2004) Synthesis of 2′-deoxynucleosides by transglycosylation with new immobilized and stabilized uridine phosphorylase and purine nucleoside phosphorylase. Adv Synth Catal 346:1361–1366

    Article  CAS  Google Scholar 

  • Utagawa T (1999) Enzymatic preparation of nucleoside antibiotics. J Mol Catal B Enzym 6:215–222

    Article  CAS  Google Scholar 

  • Van Draanen NA, Freeman GA, Short SA, Harvey R, Jansen R, Szczech G, Koszalka GW (1996) Synthesis and antiviral activity of 2′-deoxy-4′-thiopurine nucleosides. J Med Chem 39:538–542

    Article  Google Scholar 

  • Yang Y, Padilla A, Zhang C, Labesse G, Kaminski PA (2009) Structural characterization of the mammalian deoxynucleotide N-hydrolase Rcl and its stabilizing interactions with two inhibitors. J Mol Biol 394:435–447

    Article  CAS  Google Scholar 

  • Yokozeki K, Tsuji T (2000) A novel enzymatic method for the production of purine-2′-deoxyribonucleosides. J Mol Catal B Enzym 10:207–213

    Article  CAS  Google Scholar 

  • Yukiko M, Taheharu M, Shigeru C (2007) Characterization of N-deoxyribosyltransferase from Lactococcus lactis subsp. lactis. Biochim Biophys Acta 1774:1323–1330

    Article  Google Scholar 

  • Zuffi G, Ghisotti D, Oliva I, Capra E, Frascotti G, Tonon G, Orsini G (2004) Immobilized biocatalysts for the production of nucleosides and nucleoside analogues by enzymatic transglycosylation reactions. Biocatal Biotransform 22:25–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank all my colleagues in the Biochemistry and Molecular Biology I Department (Complutense University of Madrid, Spain) and in the Biotechnology and Pharmacy Department (European University of Madrid, Spain), and finally I specially thank Dr. Pierre Alexandre Kaminski (Pasteur Institute) for all the good advices and for his availability to discuss experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández-Lucas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fresco-Taboada, A., de la Mata, I., Arroyo, M. et al. New insights on nucleoside 2′-deoxyribosyltransferases: a versatile Biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl Microbiol Biotechnol 97, 3773–3785 (2013). https://doi.org/10.1007/s00253-013-4816-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4816-y

Keywords

Navigation