Skip to main content
Log in

Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksam EB, De Vries B, Van Der Klei IJ, Kiel JAKW (2009) Preserving organelle vitality: peroxisomal quality control mechanisms in yeast. FEMS Yeast Res 9:808–820

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Borders CL, Saunders JE, Blech DM, Fridovich I (1985) Essentiality of the active-site arginine residue for the normal catalytic activity of Cu, Zn superoxide dismutase. Arch Biochem Biophys 241:472–476

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye-binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci 101:5964–5969

    Article  CAS  Google Scholar 

  • Cohen G, Rapatz W, Ruis H (1988) Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem 176:159–163

    Article  CAS  Google Scholar 

  • Dellomonaco C, Amaretti A, Zanoni S, Pompei A, Matteuzzi D, Rossi M (2007) Fermentative production of superoxide dismutase with Kluyveromyces marxianus. J Ind Microbiol Biotechnol 34:27–34

    Article  CAS  Google Scholar 

  • Fridovich I (1978) Superoxide dismutases: defence against endogenous superoxide radical. Ciba Found Symp 65:77–93

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutase. Annu Rev Biochem 64:97–112

    Article  CAS  Google Scholar 

  • Fridovich I (2011) Superoxide dismutase: anti- versus pro- oxidants? Anticancer Agents Med Chem 11:175–177

    Article  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Google Scholar 

  • Gomez-Pastor R, Perez-Torrado R, Cabiscol E, Ros J, Matallana E (2010) Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 9:9

    Article  Google Scholar 

  • Gregory EM, Goscin SA, Fridovich I (1974) Superoxide dismutase and oxygen toxicity in a eukaryote. J Bacteriol 2:456–460

    Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vynilpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  • Iqbal J, Whitney P (1991) Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic Biol Med 10:69–77

    Article  CAS  Google Scholar 

  • Jakubowski W, Bilinski T, Bartosz G (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med 28:659–664

    Article  CAS  Google Scholar 

  • Kuthan H, Haussmann HJ, Werringloer J (1986) A spectrophotometric assay for superoxide dismutase activities in crude tissue fractions. Biochem J 237:175–180

    CAS  Google Scholar 

  • Lamarre C, LeMay JD, Deslauriers N, Bourbonnais Y (2001) Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. J Biol Chem 276:43784–43791

    Article  CAS  Google Scholar 

  • Lamb AL, Torres AS, O'Halloran TV, Rosenzweig AC (2001) Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8:751–755

    Article  CAS  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 6:892–898

    Article  Google Scholar 

  • Landolfo S, Zara G, Zara S, Budroni M, Ciani M, Mannazzu I (2010) Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae. Int J Food Microbiol 141:229–35

    Article  CAS  Google Scholar 

  • Liochev SI, Fridovich I (2007) The effect of superoxide dismutase on H2O2 formation. Free Radic Biol Med 42:1465–1469

    Article  CAS  Google Scholar 

  • Luk EE, Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276:47556–47562

    Article  CAS  Google Scholar 

  • Luk EE, Yang M, Jensen LT, Bourbonnais Y, Culotta VC (2005) Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem 280:22715–22720

    Article  CAS  Google Scholar 

  • Lushchak V, Semchyshyn H, Lushchak O, Mandryk S (2005) Diethyldithiocarbamate inhibits in vivo Cu, Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochem Biophys Res Commun 338:1739–1744

    Article  CAS  Google Scholar 

  • Mannarino SC, Vilela LF, Brasil AA, Aranha JN, Moradas-Ferreira P, Pereira MD, Costa V, Eleutherio EC (2011) Requirement of glutathione for Sod1 activation during lifespan extension. Yeast 28:19–25

    Article  CAS  Google Scholar 

  • Mannervik B (1987) The enzymes of glutathione metabolism: an overview. Biochem Soc Trans 15:717–718

    CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The purification and properties of superoxide dismutase from Neurospora crassa. J Biol Chem 247:3410–3414

    Google Scholar 

  • Moradas-Ferreira P, Costa V, Piper P, Mager W (1996) The molecular defences against reactive oxygen species in yeast. Mol Microbiol 19:651–658

    Article  CAS  Google Scholar 

  • Nagi MN, al-Bekairi AM, al-Sawaf HA (1995) Spectrophotometric assay for superoxide dismutase based on the nitroblue tetrazolium reduction by glucose–glucose oxidase. Biochem. Mol Biol Int 36:633–638

    CAS  Google Scholar 

  • Nishida O, Kuwazaki S, Suzuki C, Shima J (2004) Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker's yeast isolated from dried sweet potatoes (hoshi-imo). Biosci Biotechnol Biochem 68:1442–1448

    Article  CAS  Google Scholar 

  • Parrou JL, Frrancois J (1997) A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248:186–188

    Article  CAS  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    CAS  Google Scholar 

  • Pernin P, Grelaud G (1989) Application of isoenzymatic typing to the identification of nonaxenic strains of Naegleria (Protozoa, Rizopoda). Parasitol Res 75:595–598

    Article  CAS  Google Scholar 

  • Querol A, Barrio E, Huerta T, Ramon D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953

    CAS  Google Scholar 

  • Raimondi S, Uccelletti D, Matteuzzi D, Pagnoni UM, Rossi M, Palleschi C (2008) Characterization of the superoxide dismutase SOD1 gene of Kluyveromyces marxianus L3 and improved production of SOD activity. Appl Microbiol Biotechnol 77:1269–1277

    Article  CAS  Google Scholar 

  • Reddy CD, Venkaiah B (1984) Purification and characterization of Cu–Zn superoxide dismutase from mungbean (Vigna radiata) seedlings. J Biosci 6:115–123

    Article  CAS  Google Scholar 

  • Rainieri S, Zambonelli C, Kaneko Y (2003) Saccharomyces sensu stricto: systematic, genetic diversity and evolution. J Biosci Bioeng 96:1–9

    CAS  Google Scholar 

  • Rodriguez-Porrata B, Novo M, Guillamon J, Rozes N, Mas A, Otero RC (2008) Vitality enhancement of the rehydrated active dry wine yeast. Int J Food Microbiol 126:116–122

    Article  CAS  Google Scholar 

  • Schmidt PJ, Ramos-Gomez M, Culotta VC (1999) A gain of superoxide dismutase (SOD) activity obtained with CCS, the copper metallochaperone for SOD1. J Biol Chem 274:36952–36956

    Article  CAS  Google Scholar 

  • Shukla MR, Yadav R, Desai A (2009) Catalase and superoxide dismutase double staining zymogram technique for Deinococcus and Kocuria species exposed to multiple stresses. J Basic Microbiol 49:593–597

    Article  CAS  Google Scholar 

  • Soung N, Lee Y (2000) Iso-catalase profiles of Deinococcus spp. J Biochem Mol Biol 33:412–416

    CAS  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    CAS  Google Scholar 

  • Vianna CR, Silva CL, Neves MJ, Rosa CA (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca: trehalose metabolism, heat and ethanol resistance. Antonie van Leeuwenhoek 93:205–217

    Article  CAS  Google Scholar 

  • Wayne LG, Diaz GA (1986) A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem 157:89–92

    Article  CAS  Google Scholar 

  • Weisinger RA, Fridovich I (1973) Mitochondrial superoxide dismutase. J Biol Chem 248:4793–4796

    Google Scholar 

  • Yun EJ, Lee YN (2000) Production of two different catalase–peroxidases by Deinococcus radiophilus. FEMS Microbiol Lett 184:155–159

    Article  CAS  Google Scholar 

  • Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268

    Article  CAS  Google Scholar 

  • Zuzuarregui A, Monteoliva L, Gil C, del Olmo M (2006) Transcriptomica and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72:836–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Lallemand SL for transferring of non-commercial strains from their collection, and to Dr. A. Querol for the gift of the S. kudriavzevii, the S. paradoxus and the S. c × S. k hybrid strains. This work has been supported by grants AGL2008-00060 and AGL2011-24353 from the Spanish Ministry of Education and Science (MEC) to E.M, and it has been performed within the Programme VLC/Campus, Microcluster IViSoCa (Innovation for a Sustainable Viticulture and Quality), and Microcluster BBLM (Model Yeasts in Biomedicine & Biotechnology). E.G.-S. is a predoctoral fellow of the JAE program from the CSIC (Spanish National Research Council). R.G.-P. was a predoctoral fellow of the I3P program from the CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Matallana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamero-Sandemetrio, E., Gómez-Pastor, R. & Matallana, E. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 97, 4563–4576 (2013). https://doi.org/10.1007/s00253-012-4672-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4672-1

Keywords

Navigation