Applied Microbiology and Biotechnology

, Volume 97, Issue 1, pp 23–39 | Cite as

Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production

  • Madan Lal Verma
  • Colin J. Barrow
  • Munish PuriEmail author


Nanobiotechnology is emerging as a new frontier of biotechnology. The potential applications of nanobiotechnology in bioenergy and biosensors have encouraged researchers in recent years to investigate new novel nanoscaffolds to build robust nanobiocatalytic systems. Enzymes, mainly hydrolytic class of enzyme, have been extensively immobilised on nanoscaffold support for long-term stabilisation by enhancing thermal, operational and storage catalytic potential. In the present report, novel nanoscaffold variants employed in the recent past for enzyme immobilisation, namely nanoparticles, nanofibres, nanotubes, nanopores, nanosheets and nanocomposites, are discussed in the context of lipase-mediated nanobiocatalysis. These nanocarriers have an inherently large surface area that leads to high enzyme loading and consequently high volumetric enzyme activity. Due to their high tensile strengths, nanoscale materials are often robust and resistant to breakage through mechanical shear in the running reactor making them suitable for multiple reuses. The optimisation of various nanosupports process parameters, such as the enzyme type and selection of suitable immobilisation method may help lead to the development of an efficient enzyme reactor. This might in turn offer a potential platform for exploring other enzymes for the development of stable nanobiocatalytic systems, which could help to address global environmental issues by facilitating the production of green energy. The successful validation of the feasibility of nanobiocatalysis for biodiesel production represents the beginning of a new field of research. The economic hurdles inherent in viably scaling nanobiocatalysts from a lab-scale to industrial biodiesel production are also discussed.


Nanoparticle Nanofibre Nanotube Nanosheet Nanoscaffold Enzyme Stabilisation Analytical techniques Biodiesel Reactor 



Authors thank Deakin University for awarding the Alfred Deakin Post-Doctoral fellowship to one of the authors (MLV). The research was partially supported from Australian-India Strategic Research Fund (AISRF# BF 050044) for pursuing work on lipases.


  1. An HJ, Lee HJ, Jun SH, Hwang SY, Kim BC, Kim K, Lee KM, Oh MK, Kim J (2011) Enzyme precipitate coatings of lipase on polymer nanofibers. Bioprocess Biosyst Eng 34:841–847CrossRefGoogle Scholar
  2. Andrade LH, Rebelo LP, Netto CGCM, Toma HE (2010) Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilised methodologies on superparamagnetic nanoparticles. J Mol Catal B: Enzym 66:55–62CrossRefGoogle Scholar
  3. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilised on/in nanomaterials: a review. Biotechnol Adv 30:512–523CrossRefGoogle Scholar
  4. Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23:12318–12321CrossRefGoogle Scholar
  5. Bisen PS, Sanodiya BS, Thakur GS, Baghel RK, Prasad GB (2010) Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett 32:1019–1030CrossRefGoogle Scholar
  6. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055CrossRefGoogle Scholar
  7. Cang-Rong JT, Pastorin G (2009) The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20:255102CrossRefGoogle Scholar
  8. Chang M, Juang R (2007) Use of chitosan–clay composite as immobilisation support for improved activity and stability of β-glucosidase. Biochem Eng J 35:93–98CrossRefGoogle Scholar
  9. Chaubey A, Parshad R, Taneja SC, Qazi GN (2009) Arthrobacter sp. lipase immobilisation on magnetic sol–gel composite supports for enatioselectivity improvement. Process Biochem 44:154–160CrossRefGoogle Scholar
  10. Chen YZ, Ching CB, Xu R (2009) Lipase immobilisation on modified zirconia nanoparticles: studies on the effects of modifiers. Process Biochem 44:1245–1251CrossRefGoogle Scholar
  11. Chronopoulou L, Kamel G, Sparago C, Bordi F, Lupi S, Diociaiuti M, Palocci C (2011) Structure-activity relationships of Candida rugosa lipase immobilised on polylactic acid nanoparticles. Soft Matter 7:2653–2662CrossRefGoogle Scholar
  12. Cruz JC, Pfromm PH, Tomich JM, Rezac ME (2010) Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. Tertiary structure. Colloids Surf B 79:97–104CrossRefGoogle Scholar
  13. Dai T, Miletic N, Loos K, Elbahri M, Abetz V (2011) Electrospinning of poly[acrylonitrile-co-(glycidyl methacrylate)] nanofibrous mats for the immobilisation of Candida antarctica lipase B. Macromol Chem Phys 212:319–327Google Scholar
  14. Dandavate V, Keharia H, Madamwar D (2009) Ethyl isovalerate synthesis using Candida rugosa lipase immobilised on silica nanoparticles prepared in non-ionic micelles. Process Biochem 44:349–352CrossRefGoogle Scholar
  15. Dandavate V, Keharia H, Madamwar D (2011) Ester synthesis using Candida rugosa lipase immobilised on magnetic nanoparticles. Biocatal Biotransform 29:37–45CrossRefGoogle Scholar
  16. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241CrossRefGoogle Scholar
  17. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262:87–93CrossRefGoogle Scholar
  18. Deng YH, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4–SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRefGoogle Scholar
  19. Diaz JF, Balkus KJ Jr (1996) Enzyme immobilisation in MCM-41 molecular sieve. J Mol Catal B: Enzym 2:115–126CrossRefGoogle Scholar
  20. Drechsler U, Fischer NO, Frankamp BL, Rotello VM (2004) Highly efficient biocatalysts via covalent immobilisation of Candida rugosa lipase on ethylene glycol-modified gold–silica nanocomposites. Adv Mater 16:271–274CrossRefGoogle Scholar
  21. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilised on gamma-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685CrossRefGoogle Scholar
  22. Fan J, Lei J, Wang L, Yu C, Tu B, Zhao D (2003) Rapid and high-capacity immobilisation of enzymes based on mesoporous silicas with controlled morphologies. Chem Commun 17:2140–2141CrossRefGoogle Scholar
  23. Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. Methods Mol Biol 861:471–483CrossRefGoogle Scholar
  24. Ganesan A, Moore BD, Kelly SM, Price NC, Rolinski OJ, Birch DJS, Dunkin IR, Halling PJ (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chem Phys Chem 10:1492–1499CrossRefGoogle Scholar
  25. Gao S, Wang YJ, Diao X, Luo GS, Dai YY (2010) Effect of pore diameter and cross-linking method on the immobilisation efficiency of Candida rugosa lipase in SBA-15. Bioresour Technol 101:3830–3837CrossRefGoogle Scholar
  26. Georgelin T, Maurice V, Malezieux B, Siaugue JM, Cabuil V (2010) Design of multifunctionalized γ-Fe2O3@SiO2 core-shell nanoparticles for enzymes immobilisation. J Nanopart Res 12:675–680CrossRefGoogle Scholar
  27. Ghamguia H, Karra-Chaabouni M, Gargouri Y (2004) 1-butyl oleate synthesis by immobilised lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme Microb Technol 35:355–363CrossRefGoogle Scholar
  28. Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilisation. Artif Cells Blood Substit Biotechnol 39:98–109CrossRefGoogle Scholar
  29. Gupta A, Barrow CJ, Puri M (2012a) Omega-3 biotechnology: Thraustochytrdis as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745Google Scholar
  30. Gupta A, Vongsvivut P, Barrow CJ, Puri M (2012b) Molecular identification of marine yeast and its spetroscopic analysis establishes unsaturated fatty acid accumulation. J Biosci Bioeng 114:411–417CrossRefGoogle Scholar
  31. Hama S, Yamaji H, Fukumizu T, Numata T, Tamalampudi S, Kondo A, Noda H, Fukuda H (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilised within biomass support particles. Biochem Eng J 34:273–278CrossRefGoogle Scholar
  32. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468CrossRefGoogle Scholar
  33. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251CrossRefGoogle Scholar
  34. Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Immobilisation of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44:1019–1024CrossRefGoogle Scholar
  35. Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100CrossRefGoogle Scholar
  36. Huang XJ, Xu ZK, Wan LS, Innocent C, Seta P (2006) Electrospun nanofibers modified with phospholipid moieties for enzyme immobilisation. Macromol Rapid Commun 27:1341–1345CrossRefGoogle Scholar
  37. Huang XJ, Yu AG, Xu ZK (2008) Covalent immobilisation of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol 99:5459–5465CrossRefGoogle Scholar
  38. Huang XJ, Chen PC, Huang F, Ou Y, Chen MR, Xu ZK (2011) Immobilisation of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B: Enzym 70:95–100CrossRefGoogle Scholar
  39. Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57CrossRefGoogle Scholar
  40. Itoh T, Ishii R, Matsuura S, Mizuguchi J, Hamakawa S, Hanaoka TA, Tsunoda T, Mizukami F (2010) Enhancement in thermal stability and resistance to denaturants of lipase encapsulated in mesoporous silica with alkyltrimethylammonium (CTAB). Colloids Surf B 75:478–482CrossRefGoogle Scholar
  41. Ji P, Tan HS, Xu X, Feng W (2010) Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. Aiche J 56:3005–3011CrossRefGoogle Scholar
  42. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032CrossRefGoogle Scholar
  43. Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilisation: enzyme activity in catalysing esterification. J Mol Catal B: Enzym 58:103–109CrossRefGoogle Scholar
  44. Jochems P, Satyawali Y, Diels L, Dejonghe W (2011) Enzyme immobilisation on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623CrossRefGoogle Scholar
  45. Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilisation. Methods Mol Biol 679:183–191CrossRefGoogle Scholar
  46. Kalantari M, Kazemeini M, Tabandeh F, Arpanaei A (2012) Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme. J Mater Chem 22:8385–8394CrossRefGoogle Scholar
  47. Kang Y, He J, Guo XD, Guo X, Song ZH (2007) Influence of pore diameters on the immobilisation of lipase in SBA-15. Ind Eng Chem Res 46:4474–4479CrossRefGoogle Scholar
  48. Kang YJ, Chung H, Han CH, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:065401CrossRefGoogle Scholar
  49. Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilisation. Chem Eng Sci 61:1017–1026CrossRefGoogle Scholar
  50. Kim J, Jia H, Wang P (2006b) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308CrossRefGoogle Scholar
  51. Kim MI, Ham HO, Oh S-D, Park HG, Chang HN, Choi SH (2006c) Immobilisation of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B: Enzym 39:62–68CrossRefGoogle Scholar
  52. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646CrossRefGoogle Scholar
  53. Kim H, Kwon HS, Ahn J, Lee CH, Ahn IK (2009) Evaluation of silica-coated magnetic nanoparticle for the immobilisation of a His-tagged lipase. Biocatal Biotransform 27:246–253CrossRefGoogle Scholar
  54. Kralovec JA, Wang W, Barrow CJ (2010) Production of omega-3 triacylglycerol concentrates using a new food grade immobilised Candida antarctica lipase B. Aust J Chem 63:922–928CrossRefGoogle Scholar
  55. Kralovec JA, Zhang S, Barrow CJ (2012) A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem 131:639–644CrossRefGoogle Scholar
  56. Kuchibhatla SVNT, Karakpti AS, Bera D, Seal S (2007) One dimensional nanostructured materials. Prog Mater Sci 52:699–913CrossRefGoogle Scholar
  57. Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oils. Biotechnol Biofuels 2:1CrossRefGoogle Scholar
  58. Lee DG, Ponvel KM, Kim M, Hwang S, Ahn IS, Lee CH (2009) Immobilisation of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B: Enzym 57:62–66CrossRefGoogle Scholar
  59. Lee HK, Lee JK, Kim MJ, Lee CJ (2010a) Immobilisation of lipase on single walled carbon nanotubes in ionic liquid. Bull Kor Chem Soc 31:650–665CrossRefGoogle Scholar
  60. Lee SH, Doan TTN, Won K, Ha SH, Koo YM (2010b) Immobilisation of lipase within carbon nanotube-silica composites for non-aqueous reaction systems. J Mol Catal B: Enzym 62:169–172CrossRefGoogle Scholar
  61. Li SF, Wu WT (2009) Lipase-immobilised electrospun PAN nanofibrous membranes for soybean oil hydrolysis. Biochem Eng J 45:48–53CrossRefGoogle Scholar
  62. Li SF, Chen JP, Wu WT (2007) Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilisation. J Mol Catal B: Enzym 47:117–124CrossRefGoogle Scholar
  63. Li D, Muller MB, Gilje S, Kaner RB, Wallance GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  64. Li SF, Fan YH, Hu RF, Wu WT (2011) Pseudomonas cepacia lipase immobilised onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B: Enzym 72:40–45CrossRefGoogle Scholar
  65. Long JW, Logan MS, Rhodes CP, Carpenter EE, Stroud RM, Rolison DR (2004) Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J Am Chem Soc 126:16879–16889CrossRefGoogle Scholar
  66. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalisation, and application. Angew Chem Int Ed Engl 46:1222–1244CrossRefGoogle Scholar
  67. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilisation techniques. Enzyme Microb Technol 40:1451–1463CrossRefGoogle Scholar
  68. Matsuura SI, Ishii R, Itoh T, Hamakawa S, Tsunoda T, Hanaoka T, Mizukami F (2011) Immobilisation of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis. Chem Eng J 167:744–749CrossRefGoogle Scholar
  69. Miletić N, Abetz V, Ebert K, Loos K (2010) Immobilisation of Candida antarctica lipase B on polystyrene nanoparticles. Macromol Rapid Commun 31:71–74CrossRefGoogle Scholar
  70. Nair S, Kim J, Crawford B, Kim SH (2007) Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules 8:1266–1270CrossRefGoogle Scholar
  71. Nakane K, Hotta T, Ogihara T, Ogata N, Yamaguchi SJ (2007) Synthesis of (Z)-3-Hexen-1-yl acetate by lipase immobilised in polyvinyl alcohol nanofibers. J Appl Polym Sci 106:863–867CrossRefGoogle Scholar
  72. Netto CGCM, Andrade LH, Toma HE (2009) Enantioselective transesterification catalysis by Candida antartica lipase immobilised on superparamagnetic nanopartricles. Tetrahedron Asymm 20:2299–2304CrossRefGoogle Scholar
  73. Nikolic M, Srdic V, Antov M (2009) Immobilisation of lipase into mesoporous silica particles by physical adsorption. Biocatal Biotransform 27:254–262CrossRefGoogle Scholar
  74. Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B: Enzym 61:208–215CrossRefGoogle Scholar
  75. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–223CrossRefGoogle Scholar
  76. Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010) Functionalized multi-wall carbon nanotubes for lipase immobilisation. Adv Eng Mater 12:B179–B183CrossRefGoogle Scholar
  77. Pavlidis IV, Vorhaben T, Gournis D, Papadopoulos GK, Bornscheuer UT, Stamatis H (2012) Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. J Nanopart Res 14:842–851CrossRefGoogle Scholar
  78. Ponvel KM, Lee DG, Woo EJ, Ahn IS, Lee CH (2009) Immobilisation of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean J Chem Eng 26:127–130CrossRefGoogle Scholar
  79. Puri M, Gupta S, Pahuja P, Kaur A, Kanwar JR, Kennedy JF (2010a) Cell disruption optimization and covalent immobilisation of beta-d-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk. Appl Biochem Biotechnol 160:98–108CrossRefGoogle Scholar
  80. Puri M, Kaur A, Singh RS, Schwarz WH (2010b) One step purification and immobilization of His-tagged rhamnosidase for naringin hydrolysis. Process Biochem 45:445–451CrossRefGoogle Scholar
  81. Puri M, Kaur A, Schwarz WH, Singh S, Kennedy JF (2010c) Hydrolysis of citrus peel naringin by recombinant rhamnosidase from Clostridium stercorarium. J Chem Technol Biotechnol 85:1419–1422CrossRefGoogle Scholar
  82. Puri M, Kaur A, Barrow CJ, Singh RS (2011) Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK2 in a stirred tank reactor. Appl Microbiol Biotechnol 89:715–722CrossRefGoogle Scholar
  83. Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sustain Energy Rev 16:6022–6031CrossRefGoogle Scholar
  84. Rebelo LP, Netto CGCM, Toma HE, Andrade LH (2010) Enzymatic kinetic resolution of (RS)-1-(Phenyl)ethanols by Burkholderia cepacia lipase immobilised on magnetic nanoparticles. J Braz Chem Soc 21:1537–1542CrossRefGoogle Scholar
  85. Reetz MT (2010) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed 50:138–174CrossRefGoogle Scholar
  86. Rege K, Raravikar NR, Kim DY, Schadler LS, Ajayan PM, Dordick JS (2003) Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Lett 3:829–832CrossRefGoogle Scholar
  87. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilisation of lipase enzyme on magnetic iron oxide nanoparticle via a biomimetic coating. BMC Biotechnol 11:63CrossRefGoogle Scholar
  88. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653CrossRefGoogle Scholar
  89. Safarik I, Safarikova M (2009) Magnetic nano and microparticles in biotechnology. Chem Pap 63:497–505CrossRefGoogle Scholar
  90. Sakai S, Antoku K, Yamaguchi T, Kawakami K (2008) Transesterification by lipase entrapped in electrospun poly(vinyl alcohol) fibers and its application to a flow-through reactor. J Biosci Bioeng 105:687–689CrossRefGoogle Scholar
  91. Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010a) Immobilisation of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnol Lett 32:1059–1062CrossRefGoogle Scholar
  92. Sakai S, Liu YP, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010b) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol 101:7344–7349CrossRefGoogle Scholar
  93. Sen T, Bruce IJ (2009) Mesoporous silica-magnetite nanocomposite: fabrication and application in magnetic bioseparations. Microporous Mesoporous Mater 120:246–251CrossRefGoogle Scholar
  94. Sen T, Bruce IJ, Mercer T (2010) Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. Chem Commun 46:6807–6809CrossRefGoogle Scholar
  95. Serra E, Mayoral A, Sakamoto Y, Blanco RM, Diaz I (2008) Immobilisation of lipase in ordered mesoporous materials: effect of textural and structural parameters. Microporous Mesoporous Mater 114:201–213CrossRefGoogle Scholar
  96. Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilisation on multi-walled carbon nanotubes. Chem Cent J 1:30CrossRefGoogle Scholar
  97. Sheldon RA (2007) Enzyme immobilisation: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  98. Shi Q, Yang D, Su Y, Li J, Jiang Z, Jiang Y, Yuan W (2007) Covalent functionalisation of multi-walled carbon nanotubes by lipase. J Nanopart Res 9:1205–1210CrossRefGoogle Scholar
  99. Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalisation of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288CrossRefGoogle Scholar
  100. Shulga OV, Jefferson K, Khan AR, D’Souza VT, Liu J, Demchenko AV, Stine KJ (2007) Preparation and characterization of porous gold and its application as a platform for immobilisation of acetylcholine esterase. Chem Mater 19:3902–3911CrossRefGoogle Scholar
  101. Song J, Kahveci D, Chen ML, Guo Z, Xie EQ, Xu XB, Besenbacher F, Dong MD (2012a) Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir 28:6157–6162CrossRefGoogle Scholar
  102. Song YS, Shin HY, Lee JY, Park C, Kim SW (2012b) β-galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose. Food Chem 133:611–617CrossRefGoogle Scholar
  103. Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18:211–215CrossRefGoogle Scholar
  104. Sotowa KI, Takagi K, Sugiyama S (2008) Fluid flow behavior and the rate of an enzyme reaction in deep microchannel reactor under high-throughput condition. Chem Eng J 135S:S30–S36CrossRefGoogle Scholar
  105. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104CrossRefGoogle Scholar
  106. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Catalytic activity in organic solvents and stability of immobilised enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem Mater 12:3301–3305CrossRefGoogle Scholar
  107. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Immobilised enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Microporous Mesoporous Mater 44–45:755–762CrossRefGoogle Scholar
  108. Tan T, Lu JK, Nie KL, Deng L, Wang F (2010) Biodiesel production with immobilised lipase: a review. Biotechnol Adv 28:628–634CrossRefGoogle Scholar
  109. Tang ZX, Qian JQ, Shi LE (2007) Characterizations of immobilised neutral lipase on chitosan nanoparticles. Mater Lett 61:37–40CrossRefGoogle Scholar
  110. Thanh LT, Oitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H (2010) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour Technol 101:5394–5401CrossRefGoogle Scholar
  111. Tran DT, Chen CL, Chang JS (2012) Immobilisation of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119CrossRefGoogle Scholar
  112. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale grapheme. Nat Nanotechnol 4:25–29CrossRefGoogle Scholar
  113. Verma ML, Kanwar SS (2008) Properties and application of Poly (MAc-co-DMA-cl-MBAm) hydrogel immobilised Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci 110:837–846CrossRefGoogle Scholar
  114. Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus 8372. Acta Microbiol Immunol Hung 57:191–207CrossRefGoogle Scholar
  115. Verma ML, Azmi W, Kanwar SS (2008) Microbial lipases: at the interface of aqueous and non-aqueous media: a review. Acta Microbiol Immunol Hung 55:265–293CrossRefGoogle Scholar
  116. Verma ML, Barrow CJ, Puri M (2011a) Nanomaterial immobilised β-galactosidase for industrial applications. International Conference on New Horizons in Biotechnology, Trivandrum, India, pp 81–82Google Scholar
  117. Verma ML, Azmi W, Kanwar SS (2011b) Enzymatic synthesis of isopropyl acetate catalysed by immobilised Bacillus cereus lipase in organic medium. Enzym Res 2011:1–7CrossRefGoogle Scholar
  118. Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilisation of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437CrossRefGoogle Scholar
  119. Vinu A, Miyahara M, Mori T, Ariga K (2006) Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J Porous Mater 13:379–383CrossRefGoogle Scholar
  120. Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17:574–579CrossRefGoogle Scholar
  121. Wang Y, Hsieh YL (2008) Immobilisation of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J Mem Sci 309:73–81CrossRefGoogle Scholar
  122. Wang L, Jiang R (2011) Reversible His-tagged enzyme immobilisation on functionalized carbon nanotubes as nanoscale biocatalyst. Methods Mol Biol 743:95–106CrossRefGoogle Scholar
  123. Wang ZG, Wang JQ, Xu ZK (2006) Immobilisation of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J Mol Catal B: Enzym 42:45–51CrossRefGoogle Scholar
  124. Wang X, Dou P, Zhao P, Zhao C, Ding Y, Xu P (2009) Immobilisation of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. Chem Sustain Chem 2:947–950Google Scholar
  125. Wang X, Liu X, Yan X, Zhao P, Ding Y, Xu P (2011a) Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One 6(9):e24207CrossRefGoogle Scholar
  126. Wang X, Liu X, Zhao C, Ding Y, Xu P (2011b) Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresour Technol 102:6352–6355CrossRefGoogle Scholar
  127. Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4–chitosan nanoparticles for lipase immobilisation by cross-linking and oxidation in aqueous solution. Bioresour Technol 100:3459–3464CrossRefGoogle Scholar
  128. Wu Y, Wang Y, Luo G, Dai Y (2010) Effect of solvents and precipitant on the properties of chitosan nanoparticles in a water-in-oil microemulsion and its lipase immobilisation performance. Bioresour Technol 101:841–844CrossRefGoogle Scholar
  129. Xie W, Ma N (2009) Immobilised lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuel 23:1347–1353CrossRefGoogle Scholar
  130. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilised lipase on magnetic nanoparticles. Biomass Bioenergy 34(6):890–896CrossRefGoogle Scholar
  131. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001CrossRefGoogle Scholar
  132. Yang Y, Bai Y, Li Y, Lin L, Cui Y, Xia C (2008) Preparation and application of polymer-grafted nanoparticles for lipase immobilisation. J Magn Magn Mater 320:2350–2355CrossRefGoogle Scholar
  133. Ye P, Xu ZK, Wu J, Innocent C, Seta P (2006) Nanofibrous membranes containing reactive groups: electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilisation. Macromolecules 39:1041–1045CrossRefGoogle Scholar
  134. Yiu HHP, Keane MA (2012) Enzyme-magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:583–594CrossRefGoogle Scholar
  135. Yu L, Banerjee IA, Gao XY, Nuraje N, Matsui H (2005) Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem 16:1484–1487CrossRefGoogle Scholar
  136. Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S (2010) Graphene oxide as a matrix for enzyme immobilisation. Langmuir 26:6083–6085CrossRefGoogle Scholar
  137. Zou B, Hu Y, Yu D, Xia J, Tang S, Liu W, Huang H (2010) Immobilisation of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochem Eng J 53:150–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Madan Lal Verma
    • 1
  • Colin J. Barrow
    • 1
    • 2
  • Munish Puri
    • 1
    • 2
    • 3
    Email author
  1. 1.Centre for Chemistry and BiotechnologyDeakin UniversityVictoriaAustralia
  2. 2.Centre for Biotechnology and Interdisciplinary Sciences (BioDeakin), Geelong Technology Precinct, Waurn PondsDeakin UniversityVictoriaAustralia
  3. 3.Centre for Biotechnology and Interdisciplinary Sciences BioDeakinDeakin UniversityVictoriaAustralia

Personalised recommendations