Skip to main content

Advertisement

Log in

Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nanobiotechnology is emerging as a new frontier of biotechnology. The potential applications of nanobiotechnology in bioenergy and biosensors have encouraged researchers in recent years to investigate new novel nanoscaffolds to build robust nanobiocatalytic systems. Enzymes, mainly hydrolytic class of enzyme, have been extensively immobilised on nanoscaffold support for long-term stabilisation by enhancing thermal, operational and storage catalytic potential. In the present report, novel nanoscaffold variants employed in the recent past for enzyme immobilisation, namely nanoparticles, nanofibres, nanotubes, nanopores, nanosheets and nanocomposites, are discussed in the context of lipase-mediated nanobiocatalysis. These nanocarriers have an inherently large surface area that leads to high enzyme loading and consequently high volumetric enzyme activity. Due to their high tensile strengths, nanoscale materials are often robust and resistant to breakage through mechanical shear in the running reactor making them suitable for multiple reuses. The optimisation of various nanosupports process parameters, such as the enzyme type and selection of suitable immobilisation method may help lead to the development of an efficient enzyme reactor. This might in turn offer a potential platform for exploring other enzymes for the development of stable nanobiocatalytic systems, which could help to address global environmental issues by facilitating the production of green energy. The successful validation of the feasibility of nanobiocatalysis for biodiesel production represents the beginning of a new field of research. The economic hurdles inherent in viably scaling nanobiocatalysts from a lab-scale to industrial biodiesel production are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An HJ, Lee HJ, Jun SH, Hwang SY, Kim BC, Kim K, Lee KM, Oh MK, Kim J (2011) Enzyme precipitate coatings of lipase on polymer nanofibers. Bioprocess Biosyst Eng 34:841–847

    Article  CAS  Google Scholar 

  • Andrade LH, Rebelo LP, Netto CGCM, Toma HE (2010) Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilised methodologies on superparamagnetic nanoparticles. J Mol Catal B: Enzym 66:55–62

    Article  CAS  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilised on/in nanomaterials: a review. Biotechnol Adv 30:512–523

    Article  CAS  Google Scholar 

  • Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23:12318–12321

    Article  CAS  Google Scholar 

  • Bisen PS, Sanodiya BS, Thakur GS, Baghel RK, Prasad GB (2010) Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnol Lett 32:1019–1030

    Article  CAS  Google Scholar 

  • Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055

    Article  CAS  Google Scholar 

  • Cang-Rong JT, Pastorin G (2009) The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnology 20:255102

    Article  CAS  Google Scholar 

  • Chang M, Juang R (2007) Use of chitosan–clay composite as immobilisation support for improved activity and stability of β-glucosidase. Biochem Eng J 35:93–98

    Article  CAS  Google Scholar 

  • Chaubey A, Parshad R, Taneja SC, Qazi GN (2009) Arthrobacter sp. lipase immobilisation on magnetic sol–gel composite supports for enatioselectivity improvement. Process Biochem 44:154–160

    Article  CAS  Google Scholar 

  • Chen YZ, Ching CB, Xu R (2009) Lipase immobilisation on modified zirconia nanoparticles: studies on the effects of modifiers. Process Biochem 44:1245–1251

    Article  CAS  Google Scholar 

  • Chronopoulou L, Kamel G, Sparago C, Bordi F, Lupi S, Diociaiuti M, Palocci C (2011) Structure-activity relationships of Candida rugosa lipase immobilised on polylactic acid nanoparticles. Soft Matter 7:2653–2662

    Article  CAS  Google Scholar 

  • Cruz JC, Pfromm PH, Tomich JM, Rezac ME (2010) Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. Tertiary structure. Colloids Surf B 79:97–104

    Article  CAS  Google Scholar 

  • Dai T, Miletic N, Loos K, Elbahri M, Abetz V (2011) Electrospinning of poly[acrylonitrile-co-(glycidyl methacrylate)] nanofibrous mats for the immobilisation of Candida antarctica lipase B. Macromol Chem Phys 212:319–327

    CAS  Google Scholar 

  • Dandavate V, Keharia H, Madamwar D (2009) Ethyl isovalerate synthesis using Candida rugosa lipase immobilised on silica nanoparticles prepared in non-ionic micelles. Process Biochem 44:349–352

    Article  CAS  Google Scholar 

  • Dandavate V, Keharia H, Madamwar D (2011) Ester synthesis using Candida rugosa lipase immobilised on magnetic nanoparticles. Biocatal Biotransform 29:37–45

    Article  CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  • Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A 262:87–93

    Article  CAS  Google Scholar 

  • Deng YH, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4–SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29

    Article  CAS  Google Scholar 

  • Diaz JF, Balkus KJ Jr (1996) Enzyme immobilisation in MCM-41 molecular sieve. J Mol Catal B: Enzym 2:115–126

    Article  CAS  Google Scholar 

  • Drechsler U, Fischer NO, Frankamp BL, Rotello VM (2004) Highly efficient biocatalysts via covalent immobilisation of Candida rugosa lipase on ethylene glycol-modified gold–silica nanocomposites. Adv Mater 16:271–274

    Article  CAS  Google Scholar 

  • Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilised on gamma-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  • Fan J, Lei J, Wang L, Yu C, Tu B, Zhao D (2003) Rapid and high-capacity immobilisation of enzymes based on mesoporous silicas with controlled morphologies. Chem Commun 17:2140–2141

    Article  CAS  Google Scholar 

  • Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. Methods Mol Biol 861:471–483

    Article  CAS  Google Scholar 

  • Ganesan A, Moore BD, Kelly SM, Price NC, Rolinski OJ, Birch DJS, Dunkin IR, Halling PJ (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chem Phys Chem 10:1492–1499

    Article  CAS  Google Scholar 

  • Gao S, Wang YJ, Diao X, Luo GS, Dai YY (2010) Effect of pore diameter and cross-linking method on the immobilisation efficiency of Candida rugosa lipase in SBA-15. Bioresour Technol 101:3830–3837

    Article  CAS  Google Scholar 

  • Georgelin T, Maurice V, Malezieux B, Siaugue JM, Cabuil V (2010) Design of multifunctionalized γ-Fe2O3@SiO2 core-shell nanoparticles for enzymes immobilisation. J Nanopart Res 12:675–680

    Article  CAS  Google Scholar 

  • Ghamguia H, Karra-Chaabouni M, Gargouri Y (2004) 1-butyl oleate synthesis by immobilised lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme Microb Technol 35:355–363

    Article  CAS  Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilisation. Artif Cells Blood Substit Biotechnol 39:98–109

    Article  CAS  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012a) Omega-3 biotechnology: Thraustochytrdis as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Google Scholar 

  • Gupta A, Vongsvivut P, Barrow CJ, Puri M (2012b) Molecular identification of marine yeast and its spetroscopic analysis establishes unsaturated fatty acid accumulation. J Biosci Bioeng 114:411–417

    Article  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T, Numata T, Tamalampudi S, Kondo A, Noda H, Fukuda H (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilised within biomass support particles. Biochem Eng J 34:273–278

    Article  CAS  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Immobilisation of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44:1019–1024

    Article  CAS  Google Scholar 

  • Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100

    Article  CAS  Google Scholar 

  • Huang XJ, Xu ZK, Wan LS, Innocent C, Seta P (2006) Electrospun nanofibers modified with phospholipid moieties for enzyme immobilisation. Macromol Rapid Commun 27:1341–1345

    Article  CAS  Google Scholar 

  • Huang XJ, Yu AG, Xu ZK (2008) Covalent immobilisation of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol 99:5459–5465

    Article  CAS  Google Scholar 

  • Huang XJ, Chen PC, Huang F, Ou Y, Chen MR, Xu ZK (2011) Immobilisation of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B: Enzym 70:95–100

    Article  CAS  Google Scholar 

  • Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57

    Article  CAS  Google Scholar 

  • Itoh T, Ishii R, Matsuura S, Mizuguchi J, Hamakawa S, Hanaoka TA, Tsunoda T, Mizukami F (2010) Enhancement in thermal stability and resistance to denaturants of lipase encapsulated in mesoporous silica with alkyltrimethylammonium (CTAB). Colloids Surf B 75:478–482

    Article  CAS  Google Scholar 

  • Ji P, Tan HS, Xu X, Feng W (2010) Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. Aiche J 56:3005–3011

    Article  CAS  Google Scholar 

  • Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027–1032

    Article  CAS  Google Scholar 

  • Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilisation: enzyme activity in catalysing esterification. J Mol Catal B: Enzym 58:103–109

    Article  CAS  Google Scholar 

  • Jochems P, Satyawali Y, Diels L, Dejonghe W (2011) Enzyme immobilisation on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623

    Article  CAS  Google Scholar 

  • Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilisation. Methods Mol Biol 679:183–191

    Article  CAS  Google Scholar 

  • Kalantari M, Kazemeini M, Tabandeh F, Arpanaei A (2012) Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme. J Mater Chem 22:8385–8394

    Article  CAS  Google Scholar 

  • Kang Y, He J, Guo XD, Guo X, Song ZH (2007) Influence of pore diameters on the immobilisation of lipase in SBA-15. Ind Eng Chem Res 46:4474–4479

    Article  CAS  Google Scholar 

  • Kang YJ, Chung H, Han CH, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:065401

    Article  CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilisation. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Kim J, Jia H, Wang P (2006b) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308

    Article  CAS  Google Scholar 

  • Kim MI, Ham HO, Oh S-D, Park HG, Chang HN, Choi SH (2006c) Immobilisation of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B: Enzym 39:62–68

    Article  CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    Article  CAS  Google Scholar 

  • Kim H, Kwon HS, Ahn J, Lee CH, Ahn IK (2009) Evaluation of silica-coated magnetic nanoparticle for the immobilisation of a His-tagged lipase. Biocatal Biotransform 27:246–253

    Article  CAS  Google Scholar 

  • Kralovec JA, Wang W, Barrow CJ (2010) Production of omega-3 triacylglycerol concentrates using a new food grade immobilised Candida antarctica lipase B. Aust J Chem 63:922–928

    Article  CAS  Google Scholar 

  • Kralovec JA, Zhang S, Barrow CJ (2012) A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem 131:639–644

    Article  CAS  Google Scholar 

  • Kuchibhatla SVNT, Karakpti AS, Bera D, Seal S (2007) One dimensional nanostructured materials. Prog Mater Sci 52:699–913

    Article  CAS  Google Scholar 

  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oils. Biotechnol Biofuels 2:1

    Article  CAS  Google Scholar 

  • Lee DG, Ponvel KM, Kim M, Hwang S, Ahn IS, Lee CH (2009) Immobilisation of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B: Enzym 57:62–66

    Article  CAS  Google Scholar 

  • Lee HK, Lee JK, Kim MJ, Lee CJ (2010a) Immobilisation of lipase on single walled carbon nanotubes in ionic liquid. Bull Kor Chem Soc 31:650–665

    Article  CAS  Google Scholar 

  • Lee SH, Doan TTN, Won K, Ha SH, Koo YM (2010b) Immobilisation of lipase within carbon nanotube-silica composites for non-aqueous reaction systems. J Mol Catal B: Enzym 62:169–172

    Article  CAS  Google Scholar 

  • Li SF, Wu WT (2009) Lipase-immobilised electrospun PAN nanofibrous membranes for soybean oil hydrolysis. Biochem Eng J 45:48–53

    Article  CAS  Google Scholar 

  • Li SF, Chen JP, Wu WT (2007) Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilisation. J Mol Catal B: Enzym 47:117–124

    Article  CAS  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallance GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  • Li SF, Fan YH, Hu RF, Wu WT (2011) Pseudomonas cepacia lipase immobilised onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B: Enzym 72:40–45

    Article  CAS  Google Scholar 

  • Long JW, Logan MS, Rhodes CP, Carpenter EE, Stroud RM, Rolison DR (2004) Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J Am Chem Soc 126:16879–16889

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalisation, and application. Angew Chem Int Ed Engl 46:1222–1244

    Article  CAS  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilisation techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  • Matsuura SI, Ishii R, Itoh T, Hamakawa S, Tsunoda T, Hanaoka T, Mizukami F (2011) Immobilisation of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis. Chem Eng J 167:744–749

    Article  CAS  Google Scholar 

  • Miletić N, Abetz V, Ebert K, Loos K (2010) Immobilisation of Candida antarctica lipase B on polystyrene nanoparticles. Macromol Rapid Commun 31:71–74

    Article  CAS  Google Scholar 

  • Nair S, Kim J, Crawford B, Kim SH (2007) Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules 8:1266–1270

    Article  CAS  Google Scholar 

  • Nakane K, Hotta T, Ogihara T, Ogata N, Yamaguchi SJ (2007) Synthesis of (Z)-3-Hexen-1-yl acetate by lipase immobilised in polyvinyl alcohol nanofibers. J Appl Polym Sci 106:863–867

    Article  CAS  Google Scholar 

  • Netto CGCM, Andrade LH, Toma HE (2009) Enantioselective transesterification catalysis by Candida antartica lipase immobilised on superparamagnetic nanopartricles. Tetrahedron Asymm 20:2299–2304

    Article  CAS  Google Scholar 

  • Nikolic M, Srdic V, Antov M (2009) Immobilisation of lipase into mesoporous silica particles by physical adsorption. Biocatal Biotransform 27:254–262

    Article  CAS  Google Scholar 

  • Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B: Enzym 61:208–215

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–223

    Article  CAS  Google Scholar 

  • Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H (2010) Functionalized multi-wall carbon nanotubes for lipase immobilisation. Adv Eng Mater 12:B179–B183

    Article  CAS  Google Scholar 

  • Pavlidis IV, Vorhaben T, Gournis D, Papadopoulos GK, Bornscheuer UT, Stamatis H (2012) Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials. J Nanopart Res 14:842–851

    Article  CAS  Google Scholar 

  • Ponvel KM, Lee DG, Woo EJ, Ahn IS, Lee CH (2009) Immobilisation of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean J Chem Eng 26:127–130

    Article  CAS  Google Scholar 

  • Puri M, Gupta S, Pahuja P, Kaur A, Kanwar JR, Kennedy JF (2010a) Cell disruption optimization and covalent immobilisation of beta-d-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk. Appl Biochem Biotechnol 160:98–108

    Article  CAS  Google Scholar 

  • Puri M, Kaur A, Singh RS, Schwarz WH (2010b) One step purification and immobilization of His-tagged rhamnosidase for naringin hydrolysis. Process Biochem 45:445–451

    Article  CAS  Google Scholar 

  • Puri M, Kaur A, Schwarz WH, Singh S, Kennedy JF (2010c) Hydrolysis of citrus peel naringin by recombinant rhamnosidase from Clostridium stercorarium. J Chem Technol Biotechnol 85:1419–1422

    Article  CAS  Google Scholar 

  • Puri M, Kaur A, Barrow CJ, Singh RS (2011) Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK2 in a stirred tank reactor. Appl Microbiol Biotechnol 89:715–722

    Article  CAS  Google Scholar 

  • Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sustain Energy Rev 16:6022–6031

    Article  CAS  Google Scholar 

  • Rebelo LP, Netto CGCM, Toma HE, Andrade LH (2010) Enzymatic kinetic resolution of (RS)-1-(Phenyl)ethanols by Burkholderia cepacia lipase immobilised on magnetic nanoparticles. J Braz Chem Soc 21:1537–1542

    Article  CAS  Google Scholar 

  • Reetz MT (2010) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed 50:138–174

    Article  CAS  Google Scholar 

  • Rege K, Raravikar NR, Kim DY, Schadler LS, Ajayan PM, Dordick JS (2003) Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Lett 3:829–832

    Article  CAS  Google Scholar 

  • Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilisation of lipase enzyme on magnetic iron oxide nanoparticle via a biomimetic coating. BMC Biotechnol 11:63

    Article  CAS  Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2009) Magnetic nano and microparticles in biotechnology. Chem Pap 63:497–505

    Article  CAS  Google Scholar 

  • Sakai S, Antoku K, Yamaguchi T, Kawakami K (2008) Transesterification by lipase entrapped in electrospun poly(vinyl alcohol) fibers and its application to a flow-through reactor. J Biosci Bioeng 105:687–689

    Article  CAS  Google Scholar 

  • Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010a) Immobilisation of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnol Lett 32:1059–1062

    Article  CAS  Google Scholar 

  • Sakai S, Liu YP, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010b) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol 101:7344–7349

    Article  CAS  Google Scholar 

  • Sen T, Bruce IJ (2009) Mesoporous silica-magnetite nanocomposite: fabrication and application in magnetic bioseparations. Microporous Mesoporous Mater 120:246–251

    Article  CAS  Google Scholar 

  • Sen T, Bruce IJ, Mercer T (2010) Fabrication of novel hierarchically ordered porous magnetic nanocomposites for bio-catalysis. Chem Commun 46:6807–6809

    Article  CAS  Google Scholar 

  • Serra E, Mayoral A, Sakamoto Y, Blanco RM, Diaz I (2008) Immobilisation of lipase in ordered mesoporous materials: effect of textural and structural parameters. Microporous Mesoporous Mater 114:201–213

    Article  CAS  Google Scholar 

  • Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilisation on multi-walled carbon nanotubes. Chem Cent J 1:30

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilisation: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Shi Q, Yang D, Su Y, Li J, Jiang Z, Jiang Y, Yuan W (2007) Covalent functionalisation of multi-walled carbon nanotubes by lipase. J Nanopart Res 9:1205–1210

    Article  CAS  Google Scholar 

  • Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalisation of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    Article  CAS  Google Scholar 

  • Shulga OV, Jefferson K, Khan AR, D’Souza VT, Liu J, Demchenko AV, Stine KJ (2007) Preparation and characterization of porous gold and its application as a platform for immobilisation of acetylcholine esterase. Chem Mater 19:3902–3911

    Article  CAS  Google Scholar 

  • Song J, Kahveci D, Chen ML, Guo Z, Xie EQ, Xu XB, Besenbacher F, Dong MD (2012a) Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir 28:6157–6162

    Article  CAS  Google Scholar 

  • Song YS, Shin HY, Lee JY, Park C, Kim SW (2012b) β-galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose. Food Chem 133:611–617

    Article  CAS  Google Scholar 

  • Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Novel carbon materials in biosensor systems. Biosens Bioelectron 18:211–215

    Article  CAS  Google Scholar 

  • Sotowa KI, Takagi K, Sugiyama S (2008) Fluid flow behavior and the rate of an enzyme reaction in deep microchannel reactor under high-throughput condition. Chem Eng J 135S:S30–S36

    Article  CAS  Google Scholar 

  • Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  • Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Catalytic activity in organic solvents and stability of immobilised enzymes depend on the pore size and surface characteristics of mesoporous silica. Chem Mater 12:3301–3305

    Article  CAS  Google Scholar 

  • Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Immobilised enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Microporous Mesoporous Mater 44–45:755–762

    Article  Google Scholar 

  • Tan T, Lu JK, Nie KL, Deng L, Wang F (2010) Biodiesel production with immobilised lipase: a review. Biotechnol Adv 28:628–634

    Article  CAS  Google Scholar 

  • Tang ZX, Qian JQ, Shi LE (2007) Characterizations of immobilised neutral lipase on chitosan nanoparticles. Mater Lett 61:37–40

    Article  CAS  Google Scholar 

  • Thanh LT, Oitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H (2010) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour Technol 101:5394–5401

    Article  CAS  Google Scholar 

  • Tran DT, Chen CL, Chang JS (2012) Immobilisation of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119

    Article  CAS  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale grapheme. Nat Nanotechnol 4:25–29

    Article  CAS  Google Scholar 

  • Verma ML, Kanwar SS (2008) Properties and application of Poly (MAc-co-DMA-cl-MBAm) hydrogel immobilised Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci 110:837–846

    Article  CAS  Google Scholar 

  • Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus 8372. Acta Microbiol Immunol Hung 57:191–207

    Article  CAS  Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2008) Microbial lipases: at the interface of aqueous and non-aqueous media: a review. Acta Microbiol Immunol Hung 55:265–293

    Article  CAS  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2011a) Nanomaterial immobilised β-galactosidase for industrial applications. International Conference on New Horizons in Biotechnology, Trivandrum, India, pp 81–82

    Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2011b) Enzymatic synthesis of isopropyl acetate catalysed by immobilised Bacillus cereus lipase in organic medium. Enzym Res 2011:1–7

    Article  CAS  Google Scholar 

  • Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilisation of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437

    Article  CAS  Google Scholar 

  • Vinu A, Miyahara M, Mori T, Ariga K (2006) Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J Porous Mater 13:379–383

    Article  CAS  Google Scholar 

  • Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17:574–579

    Article  CAS  Google Scholar 

  • Wang Y, Hsieh YL (2008) Immobilisation of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes. J Mem Sci 309:73–81

    Article  CAS  Google Scholar 

  • Wang L, Jiang R (2011) Reversible His-tagged enzyme immobilisation on functionalized carbon nanotubes as nanoscale biocatalyst. Methods Mol Biol 743:95–106

    Article  CAS  Google Scholar 

  • Wang ZG, Wang JQ, Xu ZK (2006) Immobilisation of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption. J Mol Catal B: Enzym 42:45–51

    Article  CAS  Google Scholar 

  • Wang X, Dou P, Zhao P, Zhao C, Ding Y, Xu P (2009) Immobilisation of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. Chem Sustain Chem 2:947–950

    CAS  Google Scholar 

  • Wang X, Liu X, Yan X, Zhao P, Ding Y, Xu P (2011a) Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One 6(9):e24207

    Article  CAS  Google Scholar 

  • Wang X, Liu X, Zhao C, Ding Y, Xu P (2011b) Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresour Technol 102:6352–6355

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4–chitosan nanoparticles for lipase immobilisation by cross-linking and oxidation in aqueous solution. Bioresour Technol 100:3459–3464

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Luo G, Dai Y (2010) Effect of solvents and precipitant on the properties of chitosan nanoparticles in a water-in-oil microemulsion and its lipase immobilisation performance. Bioresour Technol 101:841–844

    Article  CAS  Google Scholar 

  • Xie W, Ma N (2009) Immobilised lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuel 23:1347–1353

    Article  CAS  Google Scholar 

  • Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilised lipase on magnetic nanoparticles. Biomass Bioenergy 34(6):890–896

    Article  CAS  Google Scholar 

  • Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001

    Article  CAS  Google Scholar 

  • Yang Y, Bai Y, Li Y, Lin L, Cui Y, Xia C (2008) Preparation and application of polymer-grafted nanoparticles for lipase immobilisation. J Magn Magn Mater 320:2350–2355

    Article  CAS  Google Scholar 

  • Ye P, Xu ZK, Wu J, Innocent C, Seta P (2006) Nanofibrous membranes containing reactive groups: electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilisation. Macromolecules 39:1041–1045

    Article  CAS  Google Scholar 

  • Yiu HHP, Keane MA (2012) Enzyme-magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:583–594

    Article  CAS  Google Scholar 

  • Yu L, Banerjee IA, Gao XY, Nuraje N, Matsui H (2005) Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem 16:1484–1487

    Article  CAS  Google Scholar 

  • Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S (2010) Graphene oxide as a matrix for enzyme immobilisation. Langmuir 26:6083–6085

    Article  CAS  Google Scholar 

  • Zou B, Hu Y, Yu D, Xia J, Tang S, Liu W, Huang H (2010) Immobilisation of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochem Eng J 53:150–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Deakin University for awarding the Alfred Deakin Post-Doctoral fellowship to one of the authors (MLV). The research was partially supported from Australian-India Strategic Research Fund (AISRF# BF 050044) for pursuing work on lipases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M.L., Barrow, C.J. & Puri, M. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97, 23–39 (2013). https://doi.org/10.1007/s00253-012-4535-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4535-9

Keywords

Navigation