Abstract
Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780 ≤ E an ≤ 0.965 V (electrooxidized MCE, eMCE). The formation of mainly S0 and minor amounts of CuS and S n 2− were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48–120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S0/S n 2− was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the S n 2−/S0/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Arredondo R, García A, Jeréz CA (1994) Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids. Appl Environ Microbiol 60:2846–2851
Bobadilla RA, Levican G, Parada P (2011) Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol 89:771–780
Devasia P, Natarajan KA (2010) Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces. Int J Miner Proces 94:135–139. doi:10.1016/j.minpro.2010.02.003
Devasia P, Natarajan KA, Sathyanarayana DN, Rao RG (1993) Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surface. Appl Environ Microbiol 59(12):4051–4055. doi:4051-4055
El Jaroudi O, Picquenard E, Demortier A, Lelieur JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S 2−2 and S 2−3 anions. Influence of the cations on bond length and angle. Inorg Chem 38:2394–2401. doi:10.1021/ic9811143
El Jaroudi O, Picquenard E, Demotier A, Lelieur JP, Corset J (2000) Polysulfide anions II: structure and vibrational spectra of the S 2−4 and S 2−5 anions. Influence of the cations on bond length, valence and torsion angle. Inorg Chem 39:2593–2603. doi:10.1021/ic991419x
Falco L, Pogliani C, Curutchet GE, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71:31–36. doi:10.1016/S0304-386X(03)00170-1
Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentration of ferrous ions. Appl Environ Microbiol 65(12):5285–5292
Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747
González DM, Lara RH, Alvarado KN, Valdez-Pérez D, Navarro-Contreras HR, García-Meza JV (2012) Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3465-2
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, Cruz G-MJV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometallurgy 103:35–44. doi:10.1016/j.hydromet.2010.02.014
Lara RH, García-Meza JV, Cruz R, Valdez-Pérez D, González I (2012a) Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 95:799–809. doi:10.1007/s00253-011-3715-3
Lara RH, García-Meza JV, González I, Cruz R (2012b) Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4099-8
Lee MS, Nicol MJ, Basson P (2008) Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate–chloride media. J Appl Electrochem 38:363–369. doi:10.1007/s10800-007-9447-5
Lei J, Huaiyang Z, Xiaotong P, Zhonghao D (2009) The use of microscopy techniques to analyze microbial biofilms of the biooxidized chalcopyrite surface. Mineral Eng 22:37–42
Liu HL, Chen BY, Lan YW, Cheng YC (2003) SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol 62:414–420. doi:10.1007/s00253-003-1280-0
Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292:139–152. doi:10.1016/0022-0728(90)87332-E
Natarajan KA, Das A (2003) Surface chemical studies on Acidithiobacillus group of bacteria with reference to mineral flocculation. Int J Miner Process 72:189–198. doi:10.1016/S0301-7516(03)00098-X
Olivera-Nappa A, Picioreanu C, Asenjo JA (2010) Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol Bioeng 106(4):660–676. doi:10.1002/bit.22731
Parker GK, Woods R, Hope GA (2008) Raman investigation of chalcopyrite oxidation. Coll Surf A 318:160–168. doi:10.1016/j.colsurfa.2007.12.030
Pogliani C, Donati E (1999) The role of exopolymers in bioleaching of a non-ferrous metal sulphide. J Ind Microbiol Biotechnol 22(2):88–92
Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7
Sasaki K, Tsunekawa M, Ohtsuka T, Konno H (1998) The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloid Surface A 133:269–278. doi:10.1016/S0927-7757(97)00200-8
Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95:153–158. doi:10.1016/j.hydromet.2008.05.009
Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321
Takakuwa S, Nishikawa T, Hosoda K, Tominaga N, Iwasaki H (1977) Promoting effect of molybdate on the growth of a sulfur oxidizing bacterium, Thiobacillus thiooxidans. J Gen Appl Microbiol 23:163–173
Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237. doi:10.1016/S0169-4332(98)00918-0
Turcotte RE, Benner AM, Riley J, Li M, Wadsworth E, Bodily DM (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–205. doi:10.1016/0022-0728(93)80088-Y
Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Mineral Process 94:52–57. doi:10.1016/j.minpro.2009.11.005
Zeng W, Qiu G, Zhou H, Liu X, Chen M, Chao W, Zhang C, Peng J (2010) Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy 100:177–180. doi:10.1016/j.hydromet.2009.11.002
Zhang C-G, Xia J-L, Ding J-N, Ouyang X-D, Nie Z-Y, Qiu G-Z (2009) Cellular acclimation of Acidithiobacillus ferrooxidans to sulfur biooxidation. Mineral Metall Proc 26:30–34
Acknowledgments
Financial support for this work comes from the Mexican Council of Science and Technology (CONACyT) (Project No. 05–49321). This work is also part of an outgoing collaboration between UJED (CA-UJED-105), UASLP (CA-UASLP-178), and UAM-I (UAM-I-CA-34). We thank Dr. Amauri Pozos and Keila N. Alvarado for the CLSM analysis (Basics Sciences Laboratory, UASLP), Dr. Jaime Ruiz-García and D. Valdez-Pérez for the AFM analysis (Colloids and Interfaces Laboratory, Institute of Physics, UASLP), Erasmo Mata-Martínez (Institute of Geology, UASLP) for the preparation of chalcopyrite sections, and Francisco Galindo-Murillo (Institute of Metallurgy, UASLP) for MCE preparation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García-Meza, J.V., Fernández, J.J., Lara, R.H. et al. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans . Appl Microbiol Biotechnol 97, 6065–6075 (2013). https://doi.org/10.1007/s00253-012-4420-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-012-4420-6


