Applied Microbiology and Biotechnology

, Volume 97, Issue 13, pp 6065–6075 | Cite as

Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans

  • J. V. García-Meza
  • J. J. Fernández
  • R. H. Lara
  • I. González
Environmental biotechnology

Abstract

Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780 ≤ Ean ≤ 0.965 V (electrooxidized MCE, eMCE). The formation of mainly S0 and minor amounts of CuS and Sn2− were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48–120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S0/Sn2− was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the Sn2−/S0/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.

Keywords

Acidithiobacillus thiooxidans Chalcopyrite Biofilms Electrooxidation Interfacial analysis 

References

  1. Arredondo R, García A, Jeréz CA (1994) Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids. Appl Environ Microbiol 60:2846–2851Google Scholar
  2. Bobadilla RA, Levican G, Parada P (2011) Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol 89:771–780CrossRefGoogle Scholar
  3. Devasia P, Natarajan KA (2010) Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces. Int J Miner Proces 94:135–139. doi:10.1016/j.minpro.2010.02.003 CrossRefGoogle Scholar
  4. Devasia P, Natarajan KA, Sathyanarayana DN, Rao RG (1993) Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surface. Appl Environ Microbiol 59(12):4051–4055. doi:4051-4055 Google Scholar
  5. El Jaroudi O, Picquenard E, Demortier A, Lelieur JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S22− and S32− anions. Influence of the cations on bond length and angle. Inorg Chem 38:2394–2401. doi:10.1021/ic9811143 CrossRefGoogle Scholar
  6. El Jaroudi O, Picquenard E, Demotier A, Lelieur JP, Corset J (2000) Polysulfide anions II: structure and vibrational spectra of the S42− and S52− anions. Influence of the cations on bond length, valence and torsion angle. Inorg Chem 39:2593–2603. doi:10.1021/ic991419x CrossRefGoogle Scholar
  7. Falco L, Pogliani C, Curutchet GE, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71:31–36. doi:10.1016/S0304-386X(03)00170-1 CrossRefGoogle Scholar
  8. Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentration of ferrous ions. Appl Environ Microbiol 65(12):5285–5292Google Scholar
  9. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747Google Scholar
  10. González DM, Lara RH, Alvarado KN, Valdez-Pérez D, Navarro-Contreras HR, García-Meza JV (2012) Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3465-2
  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  12. Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, Cruz G-MJV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometallurgy 103:35–44. doi:10.1016/j.hydromet.2010.02.014 CrossRefGoogle Scholar
  13. Lara RH, García-Meza JV, Cruz R, Valdez-Pérez D, González I (2012a) Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 95:799–809. doi:10.1007/s00253-011-3715-3 Google Scholar
  14. Lara RH, García-Meza JV, González I, Cruz R (2012b) Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4099-8
  15. Lee MS, Nicol MJ, Basson P (2008) Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate–chloride media. J Appl Electrochem 38:363–369. doi:10.1007/s10800-007-9447-5 CrossRefGoogle Scholar
  16. Lei J, Huaiyang Z, Xiaotong P, Zhonghao D (2009) The use of microscopy techniques to analyze microbial biofilms of the biooxidized chalcopyrite surface. Mineral Eng 22:37–42Google Scholar
  17. Liu HL, Chen BY, Lan YW, Cheng YC (2003) SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol 62:414–420. doi:10.1007/s00253-003-1280-0 CrossRefGoogle Scholar
  18. Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292:139–152. doi:10.1016/0022-0728(90)87332-E CrossRefGoogle Scholar
  19. Natarajan KA, Das A (2003) Surface chemical studies on Acidithiobacillus group of bacteria with reference to mineral flocculation. Int J Miner Process 72:189–198. doi:10.1016/S0301-7516(03)00098-X CrossRefGoogle Scholar
  20. Olivera-Nappa A, Picioreanu C, Asenjo JA (2010) Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol Bioeng 106(4):660–676. doi:10.1002/bit.22731 Google Scholar
  21. Parker GK, Woods R, Hope GA (2008) Raman investigation of chalcopyrite oxidation. Coll Surf A 318:160–168. doi:10.1016/j.colsurfa.2007.12.030 CrossRefGoogle Scholar
  22. Pogliani C, Donati E (1999) The role of exopolymers in bioleaching of a non-ferrous metal sulphide. J Ind Microbiol Biotechnol 22(2):88–92CrossRefGoogle Scholar
  23. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7 CrossRefGoogle Scholar
  24. Sasaki K, Tsunekawa M, Ohtsuka T, Konno H (1998) The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloid Surface A 133:269–278. doi:10.1016/S0927-7757(97)00200-8 CrossRefGoogle Scholar
  25. Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95:153–158. doi:10.1016/j.hydromet.2008.05.009 CrossRefGoogle Scholar
  26. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321Google Scholar
  27. Takakuwa S, Nishikawa T, Hosoda K, Tominaga N, Iwasaki H (1977) Promoting effect of molybdate on the growth of a sulfur oxidizing bacterium, Thiobacillus thiooxidans. J Gen Appl Microbiol 23:163–173CrossRefGoogle Scholar
  28. Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237. doi:10.1016/S0169-4332(98)00918-0 CrossRefGoogle Scholar
  29. Turcotte RE, Benner AM, Riley J, Li M, Wadsworth E, Bodily DM (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–205. doi:10.1016/0022-0728(93)80088-Y CrossRefGoogle Scholar
  30. Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Mineral Process 94:52–57. doi:10.1016/j.minpro.2009.11.005 CrossRefGoogle Scholar
  31. Zeng W, Qiu G, Zhou H, Liu X, Chen M, Chao W, Zhang C, Peng J (2010) Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy 100:177–180. doi:10.1016/j.hydromet.2009.11.002 CrossRefGoogle Scholar
  32. Zhang C-G, Xia J-L, Ding J-N, Ouyang X-D, Nie Z-Y, Qiu G-Z (2009) Cellular acclimation of Acidithiobacillus ferrooxidans to sulfur biooxidation. Mineral Metall Proc 26:30–34Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. V. García-Meza
    • 1
  • J. J. Fernández
    • 1
  • R. H. Lara
    • 2
  • I. González
    • 3
  1. 1.Geomicrobiología, Instituto de MetalurgiaUASLPSan Luis PotosiMexico
  2. 2.Facultad de Ciencias QuímicasUJEDDurangoMexico
  3. 3.Área de Electroquímica, Departamento de QuímicaUAMMexico CityMexico

Personalised recommendations