Skip to main content
Log in

Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms of Acidithiobacillus thiooxidans were grown on the surface of massive chalcopyrite electrodes (MCE) where different secondary sulfur phases were previously formed by potentiostatic oxidation of MCE at 0.780 ≤ E an ≤ 0.965 V (electrooxidized MCE, eMCE). The formation of mainly S0 and minor amounts of CuS and S n 2− were detected on eMCEs. The eMCEs were incubated with A. thiooxidans cells for 1, 12, 24, 48, and 120 h in order to temporally monitor changes in eMCE's secondary phases, biofilm structure, and extracellular polymeric substance (EPS) composition (lipids, proteins, and polysaccharides) using microscopic, spectroscopic, electrochemical, and biochemical techniques. The results show significant cell attachments with stratified biofilm structure since the first hour of incubation and EPS composition changes, the most important being production after 48–120 h when the highest amount of lipids and proteins were registered. During 120 h, periodic oxidation/formation of S0/S n 2− was recorded on biooxidized eMCEs, until a stable CuS composition was formed. In contrast, no evidence of CuS formation was observed on the eMCEs of the abiotic control, confirming that CuS formation results from microbial activity. The surface transformation of eMCE induces a structural transformation of the biofilm, evolving directly to a multilayered biofilm with more hydrophobic EPS and proteins after 120 h. Our results suggest that A. thiooxidans responded to the spatial and temporal distribution and chemical reactivity of the S n 2−/S0/CuS phases throughout 120 h. These results suggested a strong correlation between surface speciation, hydrophobic domains in EPS, and biofilm organization during chalcopyrite biooxidation by A. thiooxidans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arredondo R, García A, Jeréz CA (1994) Partial removal of lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids. Appl Environ Microbiol 60:2846–2851

    CAS  Google Scholar 

  • Bobadilla RA, Levican G, Parada P (2011) Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol 89:771–780

    Article  Google Scholar 

  • Devasia P, Natarajan KA (2010) Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces. Int J Miner Proces 94:135–139. doi:10.1016/j.minpro.2010.02.003

    Article  CAS  Google Scholar 

  • Devasia P, Natarajan KA, Sathyanarayana DN, Rao RG (1993) Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surface. Appl Environ Microbiol 59(12):4051–4055. doi:4051-4055

    CAS  Google Scholar 

  • El Jaroudi O, Picquenard E, Demortier A, Lelieur JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S 2−2 and S 2−3 anions. Influence of the cations on bond length and angle. Inorg Chem 38:2394–2401. doi:10.1021/ic9811143

    Article  Google Scholar 

  • El Jaroudi O, Picquenard E, Demotier A, Lelieur JP, Corset J (2000) Polysulfide anions II: structure and vibrational spectra of the S 2−4 and S 2−5 anions. Influence of the cations on bond length, valence and torsion angle. Inorg Chem 39:2593–2603. doi:10.1021/ic991419x

    Article  Google Scholar 

  • Falco L, Pogliani C, Curutchet GE, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 71:31–36. doi:10.1016/S0304-386X(03)00170-1

    Article  CAS  Google Scholar 

  • Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentration of ferrous ions. Appl Environ Microbiol 65(12):5285–5292

    CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  Google Scholar 

  • González DM, Lara RH, Alvarado KN, Valdez-Pérez D, Navarro-Contreras HR, García-Meza JV (2012) Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3465-2

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, Cruz G-MJV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometallurgy 103:35–44. doi:10.1016/j.hydromet.2010.02.014

    Article  CAS  Google Scholar 

  • Lara RH, García-Meza JV, Cruz R, Valdez-Pérez D, González I (2012a) Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 95:799–809. doi:10.1007/s00253-011-3715-3

    Google Scholar 

  • Lara RH, García-Meza JV, González I, Cruz R (2012b) Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4099-8

  • Lee MS, Nicol MJ, Basson P (2008) Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate–chloride media. J Appl Electrochem 38:363–369. doi:10.1007/s10800-007-9447-5

    Article  CAS  Google Scholar 

  • Lei J, Huaiyang Z, Xiaotong P, Zhonghao D (2009) The use of microscopy techniques to analyze microbial biofilms of the biooxidized chalcopyrite surface. Mineral Eng 22:37–42

    Google Scholar 

  • Liu HL, Chen BY, Lan YW, Cheng YC (2003) SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol 62:414–420. doi:10.1007/s00253-003-1280-0

    Article  CAS  Google Scholar 

  • Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292:139–152. doi:10.1016/0022-0728(90)87332-E

    Article  CAS  Google Scholar 

  • Natarajan KA, Das A (2003) Surface chemical studies on Acidithiobacillus group of bacteria with reference to mineral flocculation. Int J Miner Process 72:189–198. doi:10.1016/S0301-7516(03)00098-X

    Article  CAS  Google Scholar 

  • Olivera-Nappa A, Picioreanu C, Asenjo JA (2010) Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol Bioeng 106(4):660–676. doi:10.1002/bit.22731

    Google Scholar 

  • Parker GK, Woods R, Hope GA (2008) Raman investigation of chalcopyrite oxidation. Coll Surf A 318:160–168. doi:10.1016/j.colsurfa.2007.12.030

    Article  CAS  Google Scholar 

  • Pogliani C, Donati E (1999) The role of exopolymers in bioleaching of a non-ferrous metal sulphide. J Ind Microbiol Biotechnol 22(2):88–92

    Article  CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7

    Article  CAS  Google Scholar 

  • Sasaki K, Tsunekawa M, Ohtsuka T, Konno H (1998) The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloid Surface A 133:269–278. doi:10.1016/S0927-7757(97)00200-8

    Article  CAS  Google Scholar 

  • Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95:153–158. doi:10.1016/j.hydromet.2008.05.009

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  Google Scholar 

  • Takakuwa S, Nishikawa T, Hosoda K, Tominaga N, Iwasaki H (1977) Promoting effect of molybdate on the growth of a sulfur oxidizing bacterium, Thiobacillus thiooxidans. J Gen Appl Microbiol 23:163–173

    Article  CAS  Google Scholar 

  • Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237. doi:10.1016/S0169-4332(98)00918-0

    Article  CAS  Google Scholar 

  • Turcotte RE, Benner AM, Riley J, Li M, Wadsworth E, Bodily DM (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–205. doi:10.1016/0022-0728(93)80088-Y

    Article  CAS  Google Scholar 

  • Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Mineral Process 94:52–57. doi:10.1016/j.minpro.2009.11.005

    Article  CAS  Google Scholar 

  • Zeng W, Qiu G, Zhou H, Liu X, Chen M, Chao W, Zhang C, Peng J (2010) Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy 100:177–180. doi:10.1016/j.hydromet.2009.11.002

    Article  CAS  Google Scholar 

  • Zhang C-G, Xia J-L, Ding J-N, Ouyang X-D, Nie Z-Y, Qiu G-Z (2009) Cellular acclimation of Acidithiobacillus ferrooxidans to sulfur biooxidation. Mineral Metall Proc 26:30–34

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work comes from the Mexican Council of Science and Technology (CONACyT) (Project No. 05–49321). This work is also part of an outgoing collaboration between UJED (CA-UJED-105), UASLP (CA-UASLP-178), and UAM-I (UAM-I-CA-34). We thank Dr. Amauri Pozos and Keila N. Alvarado for the CLSM analysis (Basics Sciences Laboratory, UASLP), Dr. Jaime Ruiz-García and D. Valdez-Pérez for the AFM analysis (Colloids and Interfaces Laboratory, Institute of Physics, UASLP), Erasmo Mata-Martínez (Institute of Geology, UASLP) for the preparation of chalcopyrite sections, and Francisco Galindo-Murillo (Institute of Metallurgy, UASLP) for MCE preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. García-Meza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Meza, J.V., Fernández, J.J., Lara, R.H. et al. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans . Appl Microbiol Biotechnol 97, 6065–6075 (2013). https://doi.org/10.1007/s00253-012-4420-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4420-6

Keywords