Skip to main content
Log in

A novel actinomycete derived from wheat heads degrades deoxynivalenol in the grain of wheat and barley affected by Fusarium head blight

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Deoxynivalenol (DON) is a hazardous and globally prevalent mycotoxin in cereals. It commonly accumulates in the grain of wheat, barley and other small grain cereals affected by Fusarium head blight (caused by several Fusarium species). The concept of reducing DON in naturally contaminated grain of wheat or barley using a DON-degrading bacterium is promising but has not been accomplished. In this study, we isolated a novel DON-utilising actinomycete, Marmoricola sp. strain MIM116, from wheat heads through a novel isolation procedure including an in situ plant enrichment step. Strain MIM116 had background degradation activity, and the activity was enhanced twofold by the consumption of DON. Among Tween 20, Triton X-100 and Tween 80, we selected Tween 80 as a spreading agent of strain MIM116 because it promoted DON degradation and the growth of strain MIM116 in the presence of DON. The inoculation of MIM116 cell suspension plus 0.01% Tween 80 into 1,000 harvested kernels of wheat and barley resulted in a DON decrease from approximately 3 mg kg−1 to less than 1 mg kg−1 of dry kernels, even when cells had only basal levels of DON-degrading activity. To the best of our knowledge, this is the first report that describes (1) the isolation of a DON-degrading bacterium from wheat heads, (2) the effects of surfactants on the biodegradation of DON and (3) the decrease of DON levels in naturally contaminated wheat and barley grain using a DON-degrading bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Awad W, Ghareeb K, Bohm J, Zentek J (2010) Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:510–520

    CAS  Google Scholar 

  • Barbaro SE, Trevors JT, Inniss WE (2002) Effect of different carbon sources and cold shock on protein synthesis by a psychrotrophic Acinetobacter sp. Can J Microbiol 48:239–244

    Article  CAS  Google Scholar 

  • Bucheli TD, Wettstein FE, Hartmann N, Erbs M, Vogelgsang S, Forrer HR, Schwarzenbach RP (2008) Fusarium mycotoxins: overlooked aquatic micropollutants? J Agric Food Chem 56:1029–1034

    Article  CAS  Google Scholar 

  • Codex (2002) Discussion paper on deoxynivalenol. (Agenda Item 16 (g), CX/FAC 02/29.) Codex Committee on Food Additives and Contaminants, 34th session, Rotterdam. Codex Alimentarius Commission FAO/WHO, Rome

    Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  Google Scholar 

  • Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ (2008) Marmoricola bigeumensis sp. nov., a member of the family Nocardioidaceae. Int J Syst Evol Microbiol 58:1060–1063

    Article  CAS  Google Scholar 

  • Feng J, Zeng Y, Ma C, Cai X, Zhang Q, Tong M, Yu B, Xu P (2006) The surfactant tween 80 enhances biodesulfurization. Appl Environ Microbiol 72:7390–7393

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (2004) Worldwide regulations for mycotoxins in food and feed in 2003. FAO Food and Nutrition Paper 81. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fuchs E, Binder EM, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19:379–386

    Article  CAS  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  CAS  Google Scholar 

  • Hara S, Hashidoko Y, Desyatkin RV, Hatano R, Tahara S (2009) High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum. Appl Environ Microbiol 75:2811–2819

    Article  CAS  Google Scholar 

  • He J, Zhou T, Young JC, Boland GJ, Scott PM (2010) Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains. Trends Food Sci Technol 21:67–76

    Article  CAS  Google Scholar 

  • Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhance TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118

    CAS  Google Scholar 

  • Ikunaga Y, Sato I, Grond S, Numajiri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, Ito M, Karlovsky P, Tsushima S (2011) Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Appl Microbiol Biotechnol 89:419–427

    Article  CAS  Google Scholar 

  • Imazaki I, Kobori Y (2010) Improving the culturability of freshwater bacteria using FW70, a low-nutrient solid medium amended with sodium pyruvate. Can J Microbiol 56:333–341

    Article  CAS  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  CAS  Google Scholar 

  • Jones RK (2000) Assessments of Fusarium head blight of wheat and barley in response to fungicide treatment. Plant Dis 84:1021–1030

    Article  CAS  Google Scholar 

  • Kamande GM, Baah J, Cheng KJ, McAllister TA, Shelford JA (2000) Effect of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein absorption, and cellulose degradation by rumen microbial enzymes. J Dairy Sci 83:536–542

    Article  CAS  Google Scholar 

  • Karlovsky P (2011) Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechnol 91:491–504

    Article  CAS  Google Scholar 

  • Lee SD (2007) Marmoricola aequoreus sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 57:1391–1395

    Article  Google Scholar 

  • Lee DW, Lee SD (2010) Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 60:2135–2139

    Article  CAS  Google Scholar 

  • Lee SD, Lee DW, Ko YH (2011) Marmoricola korecus sp. nov. Int J Syst Evol Microbiol 61:1628–1631

    Article  CAS  Google Scholar 

  • Maloney SE, Maule A, Smith AR (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876

    CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  • Moschini RC, Fortugno C (1996) Predicting wheat head blight incidence using models based on meteorological factors in Pergamino, Argentina. Eur J Plant Pathology 102:211–218

    Article  Google Scholar 

  • Nakajima T (2007) Progress and outlook for the control of nivalenol and deoxynivalenol contamination due to Fusarium head blight in wheat. Mycotoxins 57:129–134

    Article  CAS  Google Scholar 

  • Parry D, Jenkinson P, Mcleod L (1995) Fusarium ear blight (scab) in small-grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84:663–679

    Article  CAS  Google Scholar 

  • Placinta CM, D’Mello JPF, Macdonald AMC (1999) A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37

    Article  CAS  Google Scholar 

  • Rotter BA, Prelusky DB, Pestka JJ (1996) Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health 48:1–34

    Article  CAS  Google Scholar 

  • Sato I, Ito M, Ishizaka M, Ikunaga Y, Sato Y, Yoshida S, Koitabashi M, Tsushima S (2012) Thirteen novel deoxynivalenol-degrading bacteria are classified within two genera with distinct degradation mechanisms. FEMS Microbiol Lett 327:110–117

    Article  CAS  Google Scholar 

  • Shima J, Takase S, Takahashi Y, Iwai Y, Fujimoto H, Yamazaki M, Ochi K (1997) Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl Environ Microbiol 63:3825–3830

    CAS  Google Scholar 

  • Shome A, Roy S, Das PK (2007) Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir 23:4130–4136

    Article  CAS  Google Scholar 

  • Sugita-Konishi Y, Kumagai S (2005) Toxicity of mycotoxins related with head blight diseases in wheat and establishment of provisional standard for tolerable level of DON in wheat. Mycotoxins 55:49–53

    Article  CAS  Google Scholar 

  • Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169

    Article  CAS  Google Scholar 

  • Tamaki H, Hanada S, Sekiguchi Y, Tanaka Y, Kamagata Y (2009) Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. Environ Microbiol 11:1827–1834

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Urzi C, Salamone P, Schumann P, Stackebrandt E (2000) Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 50(Pt 2):529–536

    Article  CAS  Google Scholar 

  • Wang Z (2011) Bioavailability of organic compounds solubilized in nonionic surfactant micelles. Appl Microbiol Biotechnol 89:523–534

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Wang J, Ogata M, Hirai H, Kawagishi H (2011) Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett 314:164–169

    Article  CAS  Google Scholar 

  • Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl Microbiol Biotechnol 50:475–483

    Article  CAS  Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the northern great plains. Phytopathology 90:17–21

    Article  CAS  Google Scholar 

  • Yoshida M, Nakajima T (2010) Deoxynivalenol and nivalenol accumulation in wheat infected with Fusarium graminearum during grain development. Phytopathology 100:763–773

    Article  CAS  Google Scholar 

  • Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R (2010) Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol 10:182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Nakajima, K. Hirayae, A. Miyasaka, F. Suzuki and M. Yoshida, the National Agricultural Research Center for Kyushu Okinawa Region, Koshi, Kumamoto, Japan, for supplying the wheat and barley grain with helpful advice. We thank T. Yoshioka and E. Aoki, the National Institute of Crop Science, Tsukuba, Ibaraki, Japan, for lending us equipment. We also thank our colleagues in the National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, Japan, for helpful discussions. This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Research project for ensuring food safety from farm to table MT-3209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiya Tsushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, M., Sato, I., Koitabashi, M. et al. A novel actinomycete derived from wheat heads degrades deoxynivalenol in the grain of wheat and barley affected by Fusarium head blight. Appl Microbiol Biotechnol 96, 1059–1070 (2012). https://doi.org/10.1007/s00253-012-3922-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3922-6

Keywords

Navigation