Skip to main content
Log in

Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We have developed an oligonucleotide microarray for the detection of biodegradative genes and bacterial diversity and tested it in five contaminated ecosystems. The array has 60-mer oligonucleotide probes comprising 14,327 unique probes derived from 1,057 biodegradative genes and 880 probes representing 110 phylogenetic genes from diverse bacterial communities, and we named it as BiodegPhyloChip. The biodegradative genes are involved in the transformation of 133 chemical pollutants. Validation of the microarray for its sensitivity specificity and quantitation were performed using DNA isolated from well-characterized mixed bacterial cultures also having non-target strains, pure degrader strains, and environmental DNA. Application of the developed array using DNA extracted from five different contaminated sites led to the detection of 186 genes, including 26 genes unique to the individual sites. Hybridization of 16S rRNA probes revealed the presence of bacteria similar to well-characterized genera involved in biodegradation of various pollutants. Genes involved in complete degradation pathways for hexachlorocyclohexane (lin), 1,2,4-trichlorobenzene (tcb), naphthalene (nah), phenol (mph), biphenyl (bph), benzene (ben), toluene (tbm), xylene (xyl), phthalate (pht), Salicylate (sal), and resistance to mercury (mer) were detected with highest intensity. The most abundant genes belonged to the enzyme hydroxylases, monooxygenases, and dehydrogenases which were present in all the five samples. Thus, the array developed and validated here shall be useful in assessing not only the biodegradative potential but also the composition of environmentally useful bacteria, simultaneously, from hazardous ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host-interaction. Proc Natl Acad Sci 101:16636–16641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodrossy L, Sessitsch A (2004) Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol 7:245–254

    Article  CAS  PubMed  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond PL, Hugenholtz P, Keller J, Blackall LL (1995) Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowtell D (1999) Options available—from start to finish—for obtaining expression data by microarray. Nat Genet 21:25–32

    Article  CAS  PubMed  Google Scholar 

  • Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cánovas D, Cases I, De Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    Article  PubMed  Google Scholar 

  • Cho JC, Tiedje JM (2001) Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar SA, Yao L, van Dongen U, Gijs Kuenen J, Muyzer G (2007) Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Appl Environ Microbiol 73:594–604

    Article  CAS  PubMed  Google Scholar 

  • Deng P, Thai MT, Ma Q, Wu W (2008) Efficient non-unique probes selection algorithm for DNA microarray. BMC Genomics 9(Suppl 1):S22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis P, Edwards EA, Liss SN, Fulthorpe R (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69:769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent M (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14

    Article  CAS  PubMed  Google Scholar 

  • Ferraroni M, Seifert J, Travkin VM, Thiel M, Kaschabek S, Scozzafava A, Golovleva L, Schlömann M, Briganti F (2005) Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation. J Biol Chem 280:21144–21154

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186:7796–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HC, Yang ZMK, Gentry TJ, Wu L, Schadt CW, Zhou JZ (2007) Microarray based analysis of microbial community RNAs by whole-community RNA amplification. Appl Environ Microbiol 73:563–571

    Article  CAS  PubMed  Google Scholar 

  • Garrido P, Toril EG, Garcia-Moyano A, Moreno-Paz M, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850

    Article  CAS  PubMed  Google Scholar 

  • Gebert J, Stralis-Pavese N, Alawi M, Bodrossy L (2008) Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ Microbiol 10:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microbiol Ecol 52:159–175

    Article  CAS  Google Scholar 

  • Gescher C, Metfies K, Frickenhaus S, Knefelkamp B, Wiltshire KH, Medlin LK (2008) Feasibility of assessing the community composition of Prasinophytes at the Helgoland roads sampling site with a DNA microarray. Appl Environ Microbiol 74:5305–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2006) Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol 72:6316–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Wu L, Fields MW, Zhou J (2005) Use of microarrays with different probe sizes for monitoring gene expression. Appl Environ Microbiol 71:5154–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28:4552–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukui M, Urushigawa Y, Stahl DA (2002) Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA–DNA membrane hybridization, and DNA microarray technology. Appl Environ Microbiol 68:3215–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Larsson O, Parodi D, Liang Z (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Res 28:e71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR (2002) Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68:6021–6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langenheder S, Lindström ES, Tranvik LJ (2006) Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 72:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letowski J, Brousseau R, Masson L (2004) Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods 57:269–278

    Article  CAS  PubMed  Google Scholar 

  • Liebich J, Chong SC, Schadt CW, He Z, Rhee SK, Zhou J (2006) Improvement of oligonucleotide probe design criteria for the development of functional gene microarrays for environmental applications. Appl Environ Microbiol 72:1688–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart D (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24

    Article  CAS  PubMed  Google Scholar 

  • Liu WT, Mirzabekov AD, Stahl DA (2001) Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ Microbiol 3:619–629

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J, Omelchenko M, Beliaev A, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA 100:4191–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Guo H, Wu J (2007) Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol 73:73–82

    Article  CAS  PubMed  Google Scholar 

  • Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loy A, Kusel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal co occurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Kumar P, Gupta KC (2006) Oligonucleotide microarrays: immobilization of phosphorylated oligonucleotides on epoxylated surface. Bioconjug Chem 7:1184–1189

    Article  CAS  Google Scholar 

  • Manickam N, Reddy MK, Saini HS, Shanker R (2008) Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J Appl Microbiol 104:952–960

    Article  CAS  PubMed  Google Scholar 

  • Manickam N, Pathak A, Mayilraj S, Saini HS, Shanker R (2010) Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India. J Appl Microbiol 109:1458–1468

    Article  CAS  PubMed  Google Scholar 

  • Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:2079–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray AE, Lies D, Li G, Nealson K, Zhou J, Tiedje JM (2001) DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc Natl Acad Sci 98:9853–9858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak A, Manickam N (2009) Molecular characterization of genes involved in the biodegradation of 1,2,4-trichlorobenzene from a Bordetella species strain IITR-02. 50th Annual Conference of Association of Microbiologist of India, National Chemical Laboratory, Pune, India; December 15–17, 2009

  • Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J (2002) Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res 30:e51

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of biodegradation and biotransformation genes in microbial communities using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70:4303–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schut GJ, Zhou J, Adams MWW (2001) DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence new type of sulfur-reducing enzyme complex. J Bacteriol 183:7027–7036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude-oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  CAS  PubMed  Google Scholar 

  • Steward GF, Jenkins BD, Ward BB, Zehr JP (2004) Development and testing of a DNA microarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol 70:1455–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stralis-Pavese N, Sessitch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analyzing landfill methanotroph communities under different plant covers. Environ Microbiol 6:347–363

    Article  CAS  PubMed  Google Scholar 

  • Taroncher-Oldenburg G, Griner EM, Francis CA, Ward BB (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl Environ Microbiol 69:1159–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiquia SM, Wu L, Chong SC, Passovets S, Xu D, Xu Y, Zhou J (2004) Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques 36:664–675

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activies of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • Trevors JT (2010) One gram of soil: a microbial biochemical gene library. Antonie van Leeuwenhoek 97:99–106

    Article  CAS  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vásquez TGP, Botero AEC, de Mesquita LMS, Torem ML (2007) Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Min Eng 20:939–944

    Article  CAS  Google Scholar 

  • Ward BB, Eveillard D, Kirshtein JD, Nelson JD, Voytek MA, Jackson GA (2007) Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ Microbiol 9:2522–2538

    Article  CAS  PubMed  Google Scholar 

  • Wilson KH, Wilson WJ, Radosevich JL, DeSantis TZ, Viswanathan VS, Kuczmarski TA, Andersen GL (2002) High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68:2535–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LY, Thompson DK, Liu XD, Fields MW, Bagwell CE, Tiedje JM, Zhou JZ (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38:6775–6782

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Liu X, Schadt CW, Zhou J (2006) Microarray-based analysis of sub-nanogram quantities of microbial community DNAs using whole community genome amplification (WCGA). Appl Environ Microbiol 72:4931–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Thompson DK, Xu Y, Tiedje JM (2004) Microbial functional genomics. Wiley, Hoboken

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India. AP is grateful to the Council of Scientific and Industrial Research, Government of India, for the research fellowship grant. We thank Genotypic Technology Private Limited (GTPL), Bangalore, India for their help in the development of microarray and hybridization experiments at their facility. We thank Dr. Raja Mugasimangalam, Dr. Sudha Narayan Rao, and Mr. Madhavan (GTPL) for their valuable discussions and advice on microarray design. Our sincere thanks to Mohd. Aiyaz (GTPL) for his excellent help in the experimental analysis and help to submit the results to the OMNIBUS-GEO. This article carries the IITR communication number 2803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natesan Manickam.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Hierarchical gene tree of functional (biodegradation) genes from five contaminated sites based on signal intensity values of Cy3-labeled targets hybridized onto the BiodegPhyloChip (JPEG 583 kb)

Fig. S2

Cluster analysis of 16S rRNA genes from five contaminated sites based on signal intensity values of Cy3-labeled targets hybridized onto the BiodegPhyloChip (JPEG 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, A., Shanker, R., Garg, S.K. et al. Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray. Appl Microbiol Biotechnol 90, 1739–1754 (2011). https://doi.org/10.1007/s00253-011-3268-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3268-5

Keywords

Navigation