Skip to main content
Log in

Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We developed a novel enzymatic glutathione (GSH) production system using Saccharomyces cerevisiae as a whole-cell biocatalyst, and improved its GSH productivity by metabolic engineering. We demonstrated that the metabolic engineering of GSH pathway and ATP regeneration can significantly improve GSH productivity by up to 1.7-fold higher compared with the parental strain, respectively. Furthermore, the combination of both improvements in GSH pathway and ATP regeneration is more effective (2.6-fold) than either improvement individually for GSH enzymatic production using yeast. The improved whole-cell biocatalyst indicates its great potential for applications to other kinds of ATP-dependent bioproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Article  CAS  Google Scholar 

  • Chow CKC, Palecek SP (2004) Enzyme encapsulation in permeabilized Saccharomyces cerevisiae cells. Biotechnol Prog 20:449–456

    Article  CAS  Google Scholar 

  • Dröge W, Breitkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59:595–600

    Article  Google Scholar 

  • Eydallin G, Viale AM, Morán-Zorzano MT, Muñoz FJ, Montero M, Baroja-Fernández E, Pozueta-Romero J (2007) Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett 581:2947–2953

    Article  CAS  Google Scholar 

  • Eydallin G, Montero M, Almagro G, Sesma MT, Viale AM, Muñoz FJ, Rahimpour M, Baroja-Fernández E, Pozueta-Romero J (2010) Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli. DNA Res 17:61–71

    Article  CAS  Google Scholar 

  • Flohé L (1985) The glutathione peroxidase reaction: molecular basis of the antioxidant function of selenium in mammals. Curr Top Cell Regul 27:473–478

    Article  Google Scholar 

  • Hara KY, Mori H (2006) An efficient method for quantitative determination of cellular ATP synthetic activity. J Biomol Screen 11:310–317

    Article  CAS  Google Scholar 

  • Hara KY (2009a) Permeable cell assay: a method for high-throughput measurement of cellular ATP synthetic activity. Methods Mol Biol. 577:251–258

    Article  CAS  Google Scholar 

  • Hara KY, Shimodate N, Hirokawa Y, Ito M, Baba T, Mori H, Mori H (2009b) Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol Lett 297:217–224

    Article  CAS  Google Scholar 

  • Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 145:701–708

    Article  CAS  Google Scholar 

  • Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  CAS  Google Scholar 

  • Li W, Li Z, Ye Q (2010) Enzymatic synthesis of glutathione using yeast cells in two-stage reaction. Bioprocess Biosyst Eng 33:675–682

    Article  CAS  Google Scholar 

  • Liao X, Deng T, Zhu Y, Du G, Chen J (2007) Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae. J Appl Microbiol 104:345–352

    Article  Google Scholar 

  • Meister A, Andersen ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  • Murata K, Tani K, Kato J, Chibata I (1981) Glycolytic pathway as an ATP generation system and its application to the production of glutathione and NADP. Enzyme Microb Technol 3:233–242

    Article  CAS  Google Scholar 

  • Penninckx MJ (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26:737–742

    Article  CAS  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    CAS  Google Scholar 

  • Ray S, Watkins DN, Misso NL, Thompson PJ (2002) Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy 32:571–577

    Article  CAS  Google Scholar 

  • Rolseth V, Djurhuus R, Svardal AM (2002) Additive toxicity of limonene and 50% oxygen and the role of glutathione in detoxification in human lung cells. Toxicology 170:75–88

    Article  CAS  Google Scholar 

  • Singh RJ (2002) Glutathione: a marker and antioxidant for aging. J Lab Clin Med 140:380–381

    Article  Google Scholar 

  • Tate S, Meister A (1981) γ-Glutamyltranspeptidase: catalytical, structural and functional aspects. Mol Cell Biochem 39:357–368

    Article  CAS  Google Scholar 

  • Thon VJ, Vigneron-Lesens C, Marianne-Pepin T, Montreuil J, Decq A, Rachez C, Ball SG, Cannon JF (1992) Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae. Induction of glycogen branching enzyme. J Biol Chem 267:15224–15228

    CAS  PubMed  Google Scholar 

  • Vartanyan LS, Gurevich S, Kozachenko AI, Nagler LG, Lozovskaya EL, Burlakova EB (2000) Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochem (Mosc) 65:442–446

    CAS  Google Scholar 

  • Wei G, Li Y, Du G, Chen J (2003) Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem 38:1133–1138

    Article  CAS  Google Scholar 

  • Wilson WA, Hughes WE, Tomamichel W, Roach PJ (2004) Increased glycogen storage in yeast results in less branched glycogen. Biochem Biophys Res Commun 320:416–423

    Article  CAS  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized. Microb Cell Fact 9:32–39

    Article  Google Scholar 

  • Yoshida K, Hariki T, Inoue H, Nakamura T (2002) External skin preparation for whitening. JP Patent 2, 002, 284, 664

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. J. Ishii (Organization of Advanced Science and Technology, Kobe University) for providing us with pGK402 and pGK405 plasmids. We thank Dr. Takashi Kondo, Dr. Naoko Okai, and Dr. Kazunori Nakashima (Organization of Advanced Science and Technology, Kobe University) for their helpful discussion. This study was supported by the Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan. Hara KY was supported by Grant-in-Aid for Young Scientists (B) (18769004, 22760608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Additional information

Hideyo Yoshida and Kiyotaka Y. Hara contibuted equally in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Hara, K.Y., Kiriyama, K. et al. Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Appl Microbiol Biotechnol 91, 1001–1006 (2011). https://doi.org/10.1007/s00253-011-3196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3196-4

Keywords

Navigation