Skip to main content
Log in

A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Laccases are copper-containing phenol oxidases that are commonly found in many types of plant, insect, fungi and bacteria. Whilst phenol oxidases have been well characterized in fungal species, laccase-type enzymes originating from bacteria have been much less well defined. Bacteria belonging to the family Azotobacteraceae share many morphological characteristics with strains already known to exhibit polyphenol and phenol oxidase activity; and hence the aim of this work was to identify and characterize a novel laccase from the isolated strain Azotobacter chroococcum SBUG 1484 in an attempt to provide further understanding of the roles such enzymes play in physiological development. Laccase activity was clearly observed through oxidation of 2,6-dimethoxyphenol, other typical substrates including: methoxy-monophenols, ortho- and para-diphenols, 4-hydroxyindole, and the non-phenolic compound para-phenylenediamine. A. chroococcum SBUG 1484 showed production of a cell-associated phenol oxidase when grown under nitrogen-fixing conditions, and was also observed when cells enter the melanogenic and encystment stages of growth. Catechol which is structurally related to melanin compounds was also released from Azotobacter cells into the surrounding culture medium during nitrogen-fixing growth. From our results we propose that a membrane-bound laccase plays an important role in the formation of melanin, which was monitored to correlate with progression of A. chroococcum SBUG 1484 cells into the encystment stage of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadulla E, Tzanko T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alcalde M (2007) Laccases: biological functions, molecular structure and industrial applications. In: Polaina J, MacCabe AP (eds) Industrial enzymes, 1st edn. Springer, New York, pp 461–476

    Chapter  Google Scholar 

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  CAS  PubMed  Google Scholar 

  • Anyanwutaku I, Petroski R, Rosazza J (1994) Oxidative coupling of mithramycin and hydroquinone catalyzed by copper oxidases and benzoquinone. Implications for the mechanism of action of aureolic acid antibiotics. Bioorg Med Chem 2:543–551

    Article  CAS  PubMed  Google Scholar 

  • Arnow LE (1938) The preparation of dopa-melanin. Science 82:308

    Article  Google Scholar 

  • Bains J, Capalash N, Sharma P (2003) Laccase from a nonmelanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnol Lett 25:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Barnum DW (1977) Spectrophotometric determination of catechol, epinephrine, dopa, dopamine and other aromatic vic-diols. Anal Chim Acta 89:157–166

    Article  CAS  PubMed  Google Scholar 

  • Bisset KA (1955) Evidence from the cytology of Azotobacter chroococcum of a relationship with Rhizobium and the Bacillaceae. J Gen Microbiol 13(3):442–445

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brenna O, Bianchi E (1994) Immobilized laccase for phenolic removal in must and wine. Biotechnol Lett 24:35–40

    Article  Google Scholar 

  • Cha J, Cooksey DA (1991) Copper resistance in Pseudomonas syringae by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claus H, Filip Z (1997) The evidence of a laccase-like activity in a Bacillus sphaericus strain. Microbiol Res 152:209–215

    Article  CAS  Google Scholar 

  • Claus H, Faber G, König H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678

    Article  CAS  PubMed  Google Scholar 

  • Dalfard AB, Khajeh K, Soudi MR, Naderi-Manesh H, Ranjbar B, Sajedi RH (2006) Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microb Technol 39:1409–1416

    Article  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  CAS  Google Scholar 

  • Endo K, Hosono K, Beppu T, Ueda K (2002) A novel extracytoplasmatic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology 148:1767–1776

    Article  CAS  PubMed  Google Scholar 

  • Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677

    Article  CAS  PubMed  Google Scholar 

  • Fauré D, Boullant ML, Bally R (1994) Isolation of Azospirillium lipoferum 4T Tn5 mutants affected in melanization and laccase activity. Appl Environ Microbiol 60:3412–3415

    Article  Google Scholar 

  • Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183:5426–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda R, Shinoda T, Morita T, Jacobson ES (1993) Characterization of a phenol oxidase from Cryptococcus neoformans var. neoformans. Microbiol Immunol 37:759–764

    Article  CAS  PubMed  Google Scholar 

  • Kennedy C, Rudnick P, MacDonald ML, Melton T (2005) Genus III. Azotobacter Beijerinck 1901, 567AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 384–402

    Google Scholar 

  • Koschorreck K, Richter S, Ene A, Roduner E, Schmid R, Urlacher V (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224

    Article  CAS  PubMed  Google Scholar 

  • Kumar SS, Sankaran S, Haigh R, Williams PH, Balakrishnan A (2001) Cytopathic effects of outer-membrane preparations of enteropathogenic Escherichia coli and co-expression of maltoporin with secretory virulence factor EspB. J Med Microbiol 50:602–612

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    CAS  PubMed  Google Scholar 

  • Layne JS, Johnson EJ (1964) Natural factors involved in the induction of cyst formation in Azotobacter. J Bacteriol 87:684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins LO, Soares CM, Pereira M, Teixeira M, Costa T, Jones GH, Jones AO (2002) Molecular and biochemical characterization of a high stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:389–397

    Google Scholar 

  • Messerschmidt A (1997) Spatial structures of ascorbate oxidase, laccase and related proteins: implications for the catalytic mechanism. In: Messerschmidt A (ed) Multi-copper oxidases, 1st edn. World Scientific, Singapore, pp 23–79

    Chapter  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  CAS  PubMed  Google Scholar 

  • Mikolasch A, Matthies A, Lalk M, Schauer F (2008a) Laccase-induced C–N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes. Appl Microbiol Biotechnol 80:389–397

    Article  CAS  PubMed  Google Scholar 

  • Mikolasch A, Wurster M, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Jülich WD, Lindequist U (2008b) Novel β-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull 56:902–907

    Article  CAS  Google Scholar 

  • Moore ERB, Pinina Norrod E, Jurtshuk P (1984) Superoxide dismutases of Azotobacter vinelandii and other aerobic, free-living nitrogen-fixing bacteria. FEMS Microbiol Lett 24:261–265

    Article  CAS  Google Scholar 

  • Neyra CA, van Berkum P (1977) Nitrate reduction and nitrogenase activity in Spirillum lipoferum. Can J Microbiol 23:306–310

    Article  CAS  PubMed  Google Scholar 

  • Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 68(5):550–557

    Article  CAS  Google Scholar 

  • Peace TA, Brock KV, Stills HF (1994) Comparative analysis of the 16S rRNA gene sequence of the putative agent of proliferative ileitis of hamsters. Int J Syst Bacteriol 44:832–835

    Article  CAS  PubMed  Google Scholar 

  • Pomerantez SH (1966) The tyrosine hydroxylase activity of mammalian tyrosinase. J Biol Chem 241:161–168

    Google Scholar 

  • Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99(5):2766–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Amat A, Lucas-Elio P, Ferandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  • Shivprasad S, Page WJ (1989) Catechol formation and melanization by Na+-dependent Azotobacter chroococcum: a protective mechanism for aeroadaption? Appl Environ Microbiol 55(7):1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano F, Lucas-Elio P, Lopez-Serrano D, Fernandez E, Sanchez-Amat A (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol Lett 204:175–181

    Article  CAS  PubMed  Google Scholar 

  • Stevenson LH, Socolofsky MD (1972) Encystment of Azotobacter vinelandii in liquid culture. Antonie Leeuwenhoek 38:605–616

    Article  Google Scholar 

  • Takami H, Takaki Y, Chee G (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JP, Skerman VBD (1979) Azotobacteraceae: the taxonomy and ecology of the aerobic nitrogen fixing bacteria. Academic, New York

    Google Scholar 

  • Wheater DM (1955) The characteristics of Lactobacillus acidophilus and Lactobacillus bulgaricus. J Gen Microbiol 12:123–132

    Article  CAS  PubMed  Google Scholar 

  • White LP (1958) Melanin, a naturally occurring cation exchange material. Nat Lond U K 182:1427–1428

    Article  CAS  Google Scholar 

  • Whittaker JR (1963) Changes in the melanogenesis during the dedifferentiation of chick retinal pigment cells in cell culture. Dev Biol 8:99–127

    Article  CAS  PubMed  Google Scholar 

  • Williamson PR (1994) Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 176(3):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirtz R (1908) Eine einfache Art der Sporenfärbung. Zbl Bakt Hyg I Abt Orig 46:727–728

    Google Scholar 

  • Wyss O, Smith DD, Pope LM, Olson KE (1969) Endogenous encystment of Azotobacter vinelandii. J Bacteriol 100(1):475–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winogradski S (1926) Études sur la Microbiologie du sol. Ann Inst Pasteur 40:455–520

    Google Scholar 

  • Winogradski S (1935) The method in soil microbiology as illustrated by studies on Azotobacter and the nitrifying organisms. Soil Sci 40:59–76

    Article  Google Scholar 

  • Winogradski S (1939) Sur la synthése biogéne de l’ammoniac dans le sol et les eaux. 3rd Commission Intern Soc Soil Sci Trans B:37–39

  • Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gibbons J, Garcia-Rivera J, Casadevall A, Williamson PR (2001) Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun 69:5589–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The government of Mecklenburg-Vorpommern, Germany, in the framework of Landesgraduiertenförderung, is gratefully acknowledged for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Schauer.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESMpdf (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herter, S., Schmidt, M., Thompson, M.L. et al. A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum . Appl Microbiol Biotechnol 90, 1037–1049 (2011). https://doi.org/10.1007/s00253-011-3093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3093-x

Keywords

Navigation