Skip to main content
Log in

Identifying diazotrophs by incorporation of nitrogen from 15N2 into RNA

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The diversity and abundance of active diazotrophs was investigated in a New Zealand pulp and paper wastewater by enrichment with 15N2. Purified 15N-RNA was analysed by reverse transcription, molecular cloning and sequence analysis of 16S rRNA to reveal a diverse community of bacteria as indicated by a Shannon Weaver Index value of > 2.8. The major class represented in the enriched culture were the γ-Proteobacteria at 85% with a secondary group of the phylum Firmicutes present at 8.2%, the remaining sequences were affiliated with the α- and β-Proteobacterial classes (1.4% and 4.3%, respectively). Three dominant genera, Aeromonas, Pseudomonas and Bacillus, were identified by comparison with published sequences and phylogenetic analysis. To confirm that representatives of the taxonomic groups identified from the active enriched nitrogen-fixing community were capable of fixing nitrogen Aeromonas and Pseudomonas species were cultivated and shown to possess nifH genes. In wastewater, fluorescence in situ hybridisation probing revealed that the dominant nitrogen-fixing population identified in this study were present in the population, but at lower levels. The population is, therefore, reliant on a small sub-population of diazotrophs to supply the community's nitrogen needs above that already present in the wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison SL, McDonald IR, Lloyd-Jones G (2010) Stable isotope probing: technical considerations when resolving 15N2-labeled RNA in gradients. J Microbiol Meth 80:70–75

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 21:403–410

    Google Scholar 

  • Amann R (1995) In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, London, pp 1–15

    Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  CAS  Google Scholar 

  • Bostrom KH, Riemann L, Kuhl M, Hagstrom A (2007) Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol 9:152–164

    Article  Google Scholar 

  • Bowers TH, Reid NM, Lloyd-Jones G (2008) Composition of nifH in a wastewater treatment system reliant on N2 fixation. Appl Microbiol Biotechnol 79:811–818

    Article  CAS  Google Scholar 

  • Bruce ME, Clark TA (1994) Klebsiella and nitrogen fixation in pulp and paper mill effluents and treatment systems. Appita 47:231–237

    CAS  Google Scholar 

  • Capone DG (2008) The marine nitrogen cycle. Microbe 3:186–192

    Google Scholar 

  • Chan YK, Barraquio WL, Knowles R (1994) N2-fixing pseudomonads and related soil bacteria. FEMS Microbiol Rev 13:95–117

    Article  CAS  Google Scholar 

  • Clark TA, Dare PH, Bruce ME (1997) Nitrogen fixation in an aerated stabilization basin treating bleached kraft mill wastewater. Water Environ Res 69:1039–1046

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucl Acids Res 33:D294–D296

    Article  CAS  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  Google Scholar 

  • Daims H, Lucker S, Wagner M (2006a) daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  CAS  Google Scholar 

  • Daims H, Taylor MW, Wagner M (2006b) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489

    Article  CAS  Google Scholar 

  • Dionisi D, Majone M, Levantesi C, Bellani A, Fuoco A (2006) Effect of feed length on settleability, substrate uptake and storage in a sequencing batch reactor treating an industrial wastewater. Environ Technol 27:901–908

    Article  CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  CAS  Google Scholar 

  • Felske A, Akkermans ADL, De Vos WM (1998) In situ detection of an uncultured predominant Bacillus in Dutch grassland soils. Appl Environ Microbiol 64:4588–4590

    CAS  Google Scholar 

  • Friedrich U, Van Langenhove H, Altendorf K, Lipski A (2003) Microbial community and physicochemical analysis of an industrial waste gas biofilter and design of 16S rRNA-targeting oligonucleotide probes. Environ Microbiol 5:439

    Article  Google Scholar 

  • Gapes DJ, Frost NM, Clark TA, Dare PH, Hunter RG, Slade AH (1999) Nitrogen fixation in the treatment of pulp and paper wastewaters. Water Sci Technol 40:85–92

    CAS  Google Scholar 

  • Gauthier F, Neufeld JD, Driscoll BT, Archibald FS (2000) Coliform bacteria and nitrogen fixation in pulp and paper mill effluent treatment systems. Appl Environ Microbiol 66:5155–5160

    Article  CAS  Google Scholar 

  • Gould WD, Hagedorn C, Bardinelli TR, Zablotowicz RM (1985) New selective media for enumeration and recovery of fluorescent Pseudomonads from various habitats. Appl Environ Microbiol 49:28–32

    CAS  Google Scholar 

  • Hatayama K, Kawai S, Shoun H, Ueda Y, Nakamura A (2005) Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 55:1539–1544

    Article  CAS  Google Scholar 

  • Kapley A, De Baere T, Purohit HJ (2007) Eubacterial diversity of activated biomass from a common effluent treatment plant. Res Microbiol 158:494–500

    Article  CAS  Google Scholar 

  • Kielwein G (1969) Ein Nährboden zur selektiven Züchtung von Pseudomonaden und Aeromonaden. Arch f Lebensmittelhyg 20:131–133

    Google Scholar 

  • Kielwein G (1971a) Die Isolierung und Differenzierung von Pseudomonaden aus Lebensmitteln. Arch f Lebensmittelhyg 22:29–37

    Google Scholar 

  • Kielwein G (1971b) Pseudomonaden und Aromonaden in Trinkmilch: Ihr Nachweis und ihre Bewertung. Arch f Lebensmittelhyg 22:15–19

    Google Scholar 

  • Kielwein G, Gerlach R, Johne H (1969) Untersuchungen über das Vorkommen von Aeromonas hydrophila in Rohmilch. Arch f Lebensmittelhyg 20:34–38

    Google Scholar 

  • Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt S, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. Chichester, Wiley, pp 115–175

    Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  CAS  Google Scholar 

  • Manefield M, Whitelely AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligonucelotide probes for the major subclasses of Proteobacteria – problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater - a review. Sci Total Environ 333:37–58

    Article  CAS  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196

    Article  CAS  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  Google Scholar 

  • Reid NM, Bowers TH, Lloyd-Jones G (2008) Bacterial community composition of a wastewater treatment system reliant on N2 fixation. Appl Microbiol Biotechnol 79:285–292

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  Google Scholar 

  • Slade AH, Anderson SM, Evans BG (2003) Nitrogen fixation in the activated slude treatment of thermomechanical pulping wastewater: effect of dissolved oxygen. Water Sci Technol 48:1–8

    CAS  Google Scholar 

  • Slade AH, Ellis RJ, vanden Heuvel M, Stuthridge TR (2004a) Nutrient minimisation in the pulp and paper industry: an overview. Water Sci Technol 50:111–122

    CAS  Google Scholar 

  • Slade AH, Gapes DJ, Stuthridge TR, Anderson SM, Dare PH, Pearson HGW, Dennis M (2004b) N-ViroTech—a novel process for the treatment of nutrient limited wastewaters. Water Sci Technol 50:131–139

    CAS  Google Scholar 

  • Smith NR, Yu Z, Mohn WW (2003) Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown. Water Res 37:4873–4884

    Article  CAS  Google Scholar 

  • Sprent JI, Sprent P (1990) In nitrogen fixing organisms: pure and applied aspects. London & New York, Chapman Hall

    Google Scholar 

  • Tiirola MA, Busse HJ, Kampfer P, Mannisto MK (2005) Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55:583–588

    Article  CAS  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227

    Article  CAS  Google Scholar 

  • Xie GH, Cui ZJ, Yu JHW, Steinberger Y (2006) Identification of nif genes in N2-fixing bacterial strains isolated from rice fields along the Yangtze River Plain. J Basic Microbiol 46:56–63

    Article  CAS  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. PNAS 105:7564–7569

    Article  CAS  Google Scholar 

  • Yu Z, Mohn WW (2001) Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl Environ Microbiol 67:1565–1574

    Article  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Zealand Foundation for Research and Technology and the Tertiary Education Commission. We thank Marie Dennis for her help with the FISH optimisation and microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Addison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Addison, S.L., McDonald, I.R. & Lloyd-Jones, G. Identifying diazotrophs by incorporation of nitrogen from 15N2 into RNA. Appl Microbiol Biotechnol 87, 2313–2322 (2010). https://doi.org/10.1007/s00253-010-2731-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2731-z

Keywords

Navigation