Skip to main content
Log in

New and classic families of secreted fungal heme peroxidases

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant compounds as well as in the natural turnover of humic substances and organohalogens. The current review focuses on the most recently discovered and novel types of heme-dependent peroxidases, aromatic peroxygenases (APOs), and dye-decolorizing peroxidases (DyPs), which catalyze remarkable reactions such as peroxide-driven oxygen transfer and cleavage of anthraquinone derivatives, respectively, and represent own separate peroxidase superfamilies. Furthermore, several aspects of the “classic” fungal heme-containing peroxidases, i.e., lignin, manganese, and versatile peroxidases (LiP, MnP, and VP), phenol-oxidizing peroxidases as well as chloroperoxidase (CPO), are discussed against the background of recent scientific developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology

  2. A recent search in GenBank in February 2010 revealed more than 1,500 fungal nucleotide and 2,200 predicted fungal protein sequences annotated as “peroxidases.”

  3. According to the Index fungorum (http://www.indexfungorum.org), the fungus belongs to the incertae sedis, i.e., it has an uncertain position within the Ascomycotina. Other authors classify C. fumago in the neighborhood of the mitosporic Capnodiaceae (Reynolds and Faull 2001).

  4. In some respects, hypohalite formation can be also regarded as an oxygen transfer reaction.

  5. In earlier publications, this enzyme was also referred to as Agrocybe aegerita peroxidase/peroxygenase (AaP), or haloperoxidase–peroxygenase (e.g., Ullrich et al. 2004; Ullrich and Hofrichter 2005; Hofrichter and Ullrich 2006; Kluge et al. 2007). Because of the discovery of more and more aromatic peroxygenases, they should be systematically abbreviated by the capital letter of the genus plus the first and second letter of the epitheton and the acronym APO (that stands for aromatic peroxygenase): for example, AaeAPO, aromatic peroxygenase of Agrocybe aegerita.

  6. According to the Index fungorum (http://www.indexfungorum.org), the species is referred to as Mycetinis scorodonius named by Wilson and Desjardin (2005).

References

  • Alvarado B, Torres E (2009) Recents patents in the use of peroxidases. Recent Pat Biotechnol 3:88–102

    CAS  Google Scholar 

  • Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485

    CAS  Google Scholar 

  • Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066

    CAS  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    CAS  Google Scholar 

  • Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809

    CAS  Google Scholar 

  • Ayala M, Roman R, Vazquez-Duhalt R (2007) A catalytic approach to estimate the redox potential of heme-peroxidases. Biochem Biophys Res Commun 357:804–808

    CAS  Google Scholar 

  • Ayala M, Pickard MA, Vazquez-Duhalt R (2008) Fungal enzymes for environmental purposes, a molecular biology challenge. J Mol Microbiol Biotechnol 15:172–180

    CAS  Google Scholar 

  • Azevedo AM, Martins VC, Prazeres DM, Vojinovic V, Cabral JM, Fonseca LP (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247

    CAS  Google Scholar 

  • Baciocchi E, Bietti M, Gerini MF, Lanzalunga O (2002) The mediation of veratryl alcohol in oxidations promoted by lignin peroxidase: the lifetime of veratryl alcohol radical cation. Biochem Biophys Res Commun 293:832–835

    CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    CAS  Google Scholar 

  • Banci L, Ciofi-Baffoni S, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38:3205–3210

    CAS  Google Scholar 

  • Bengtson P, Bastviken D, de Boer W, Oberg G (2009) Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ Microbiol 11:1330–1339

    CAS  Google Scholar 

  • Blanke SR, Yi S, Hager LP (1989) Development of semi-continuous and continuous flow bioreactors for the high level production of chloroperoxidase. Biotechnol Lett 11:769–774

    CAS  Google Scholar 

  • Blodig W, Smith AT, Doyle WA, Piontek K (2001) Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J Mol Biol 305:851–861

    CAS  Google Scholar 

  • Bond AM, Fleming BD, Martin LL (2007) The electrochemistry of cytochrome P450. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, 1st edn. John Wiley & Sons Ltd, Chichester, pp 127–155

    Google Scholar 

  • Borole AP, Davison BH (2007) Techno-economic analysis of biocatalytic processes for production of alkene epoxides. Appl Biochem Biotechnol 137–140:437–449

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    CAS  Google Scholar 

  • Cai D, Tien M (1992) Kinetic studies on the formation and decomposition of compounds II and III. Reactions of lignin peroxidase with H2O2. J Biol Chem 267:11149–11155

    CAS  Google Scholar 

  • Cartron ML, Mitchell SA, Woodhall MR, Andrews SC, Watson KA (2007) Preliminary X-ray diffraction analysis of YcdB from Escherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport. Acta Crystallogr F Struct Biol Cryst Commun 63:37–41

    Google Scholar 

  • Casella L, Poli S, Gullotti M, Selvaggini C, Beringhelli T, Marchesini A (1994) The chloroperoxidase-catalyzed oxidation of phenols. Mechanism, selectivity, and characterization of enzyme-substrate complexes. Biochemistry 33:6377–6386

    CAS  Google Scholar 

  • Chang HC, Holland RD, Bumpus JA, Churchwell MI, Doerge DR (1999) Inactivation of Coprinus cinereus peroxidase by 4-chloroaniline during turnover: comparison with horseradish peroxidase and bovine lactoperoxidase. Chemico-Biol Int 123:197–217

    CAS  Google Scholar 

  • Chiang R, Rand-Meir T, Makino R, Hager LP (1976) Compound X. An intermediate in enzymatic halogenation. J Biol Chem 251:6340–6346

    CAS  Google Scholar 

  • Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    CAS  Google Scholar 

  • Conesa A, Punt PJ, van Luijk N, van den Hondel CA (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171

    CAS  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CA (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    CAS  Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    CAS  Google Scholar 

  • Dai L, Klibanov AM (2000) Peroxidase-catalyzed asymmetric sulfoxidation in organic solvents versus in water. Biotechnol Bioeng 70:353–357

    CAS  Google Scholar 

  • Dau AH (2008) Novel extracellular haloperoxidase-peroxygenases from the coprophilous fungi Coprinus radians and Coprinus verticillatus: production, purification and biochemical characterization. Ph.D. Thesis (dissertation), Unit of Environmental Biotechnology, International Graduate School of Zittau (Germany)

  • Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439

    CAS  Google Scholar 

  • de Hoog HM, Nallani M, Cornelissen JJ, Rowan AE, Nolte RJ, Arends IW (2009) Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. Org Biomol Chem 7:4604–4610

    Google Scholar 

  • Dingler C, Ladner W, Krei GA, Cooper BS, Hauer B (1996) Preparation of (R)-2-(4-hydroxyphenoxy)propionic acid by biotransformation. Pestic Sci 46:33–53

    CAS  Google Scholar 

  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105

    CAS  Google Scholar 

  • Dunford HB (1991) Horseradish peroxidase: structure and kinetic properties. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, 1st edn. CRC Press, Boca Raton, Ann Arbor, Boston, pp 1–24

    Google Scholar 

  • Dunford HB (1999) Heme peroxidases, 1st edn. Wiley-VCH, New York

    Google Scholar 

  • Everse J, Everse KE, Grisham MB (1991a) Peroxidases in chemistry and biology. 1st edn., vol. I, 1st edn. CRC Press, Boca Raton, Ann Arbor, Boston

    Google Scholar 

  • Everse J, Everse KE, Grisham MB (1991b) Peroxidases in chemistry and biology. 1st edn., vol. II. CRC Press, Boca Raton, Ann Arbor, Boston

    Google Scholar 

  • Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893

    CAS  Google Scholar 

  • Ferreira P, Hernández-Ortega A, Herguedas B, Martínez AT, Medina M (2009) Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates. J Biol Chem 284:28840–28847

    Google Scholar 

  • Fleischmann P, Zorn H (2008) Enzymic pathways for formation of carotenoid cleavage products. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: natural functions, 1st edn. Birkhäuser, Basel, pp 341–366

    Google Scholar 

  • Fleischmann A, Darsow M, Degtyarenko K, Fleischmann W, Boyce S, Axelsen KB, Bairoch A, Schomburg D, Tipton KF, Apweiler R (2004) IntEnz, the integrated relational enzyme database. Nucleic Acids Res 32:D434–D437

    CAS  Google Scholar 

  • Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004) Biodegradation of the hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine ring cleavage product 4-nitro-2, 4-diazabutanal by Phanerochaete chrysosporium. Appl Environ Microbiol 70:1123–1128

    CAS  Google Scholar 

  • Gazarian IG, Lagrimini LM (1996) Purification and unusual kinetic properties of a tobacco anionic peroxidase. Phytochemistry 41:1029–1034

    Google Scholar 

  • Gazarian IG, Lagrimini LM (1998) Anaerobic stopped-flow studies of indole-3-acetic acid oxidation by dioxygen catalysed by horseradish C and anionic tobacco peroxidase at neutral pH: catalase effect. Biophys Chem 72:231–237

    CAS  Google Scholar 

  • Gazarian IG, Lagrimini LM, Mellon FA, Naldrett MJ, Ashby GA, Thorneley RN (1998) Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid. Biochem J 333(Pt1):223–232

    CAS  Google Scholar 

  • Gedig T, Decker D, Scheibner K, Hofrichter M, Ullrich R, Kluge M (2008) Process for the preparation of optically active 1-arylalcohols using the haloperoxidase of Agrocybe aegerita. patent, WO/2008/028526

  • Geigert J, Lee TD, Dalietos DJ, Hirano DS, Neidleman SL (1986) Epoxidation of alkenes by chloroperoxidase catalysis. Biochem Biophys Res Commun 136:778–782

    CAS  Google Scholar 

  • Gold MH, Youngs HL, Gelpke MD (2000) Manganese peroxidase. Met Ions Biol Syst 37:559–586

    CAS  Google Scholar 

  • Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569:101–110

    CAS  Google Scholar 

  • Grey CE, Rundbäck F, Adlercreutz P (2008) Improved operational stability of chloroperoxidase through use of antioxidants. J Biotechnol 135:196–201

    CAS  Google Scholar 

  • Hager LP, Morris DR, Brown FS, Eberwein H (1966) Chloroperoxidase. II. Utilization of halogen anions. J Biol Chem 241:1769–1777

    CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18

    CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    CAS  Google Scholar 

  • Hammel KE, Jensen KA Jr, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281

    CAS  Google Scholar 

  • Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blee E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151

    CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers: lignin, humic substances and coal, 1st edn. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed.) The Mycota, X, Industrial applications, 2nd edn. Springer, Berlin Heidelberg New York (in press)

  • Hatakka A, Lundell T, Hofrichter M, Maijala P (2003) Manganese peroxidase and its role in the degradation of wood lignin. In: Mansfield SD, Saddler JN (eds) Applications of enzymes to lignocellulosics, ACS Symposium Series 855. American Chemical Society, Washington DC, pp 230–243

    Google Scholar 

  • Hildén K, Martinez AT, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419

    Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    CAS  Google Scholar 

  • Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288

    CAS  Google Scholar 

  • Hofrichter M, Ullrich R (2010) New trends in fungal biooxidation. In: Hofrichter M (ed.) The Mycota, X, Industrial applications, 2nd edn. Springer, Berlin Heidelberg New York (in press)

  • Hofrichter M, Ziegenhagen D, Vares T, Friedrich M, Jager MG, Fritsche W, Hatakka A (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett 434:362–366

    CAS  Google Scholar 

  • Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A (1999) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870

    CAS  Google Scholar 

  • Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    CAS  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna M, Kinne M, Kluge M, Aranda E, Liers C, Poraj-Kobielska M, Gröbe G, Scheibner K, Bittner B, Piontek K, Schubert R, Hammel K (2009) Aromatic peroxygenases from mushrooms: extracellular heme-thiolate proteins of a new enzyme sub-subclass? In: Shoun H, Ohkawa H (eds), 16th International Conference on Cytochrome P450 (Nago, Okinawa, Japan), Medimond (International Proceedings), Bologna, (Italy), pp. 83–88

  • Horn A (2009) The use of a novel peroxidase from the basidiomycete Agrocybe aegerita as an example of enatioselective sulfoxidation (Der Einsatz einer neuartigen Peroxidase des Basidiomyceten Agrocybe aegerita am Beispiel der enatioselektiven Sulfoxidation). Dissertation, University of Rostock

  • Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S (2003) The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr D Biol Crystallogr 59:997–1003

    Google Scholar 

  • Huang Q, Huang Q, Pinto RA, Griebenow K, Schweitzer-Stenner R, Weber WJ Jr (2005) Inactivation of horseradish peroxidase by phenoxyl radical attack. J Am Chem Soc 127:1431–1437

    CAS  Google Scholar 

  • Huang ST, Tzean SS, Tsai BY, Hsieh HJ (2009) Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiology 155:424–433

    CAS  Google Scholar 

  • Husain Q, Husain M, Kulshrestha Y (2009) Remediation and treatment of organopollutants mediated by peroxidases: a review. Crit Rev Biotechnol 29:94–119

    Google Scholar 

  • Ikehata K, Buchanan ID (2002) Screening of Coprinus species for the production of extracellular peroxidase and evaluation of the enzyme for the treatment of aqueous phenol. Environ Technol 23:1355–1367

    CAS  Google Scholar 

  • Ishimaru A, Yamazaki I (1977) Hydroperoxide-dependent hydroxylation involving "H2O2-reducible hemoprotein" in microsomes of pea seeds. A new type enzyme acting on hydroperoxide and a physiological role of seed lipoxygenase. J Biol Chem 252:6118–6124

    CAS  Google Scholar 

  • Johansson T, Nyman PO (1993) Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. I. Isolation of enzyme forms and characterization of physical and catalytic properties. Arch Biochem Biophys 300:49–56

    CAS  Google Scholar 

  • Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 54:1319–1325

    CAS  Google Scholar 

  • Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399:670–673

    CAS  Google Scholar 

  • Joshi DK, Gold MH (1993) Degradation of 2, 4, 5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785

    CAS  Google Scholar 

  • Juliána MC, Aceroa J, Salazara O, Keijerb J, Rubio V (1999) Mating type-correlated molecular markers and demonstration of heterokaryosis in the phytopathogenic fungus Thanatephorus cucumeris (Rhizoctonia solani) AG 1-IC by AFLP DNA fingerprinting analysis. J Biotech 67:49–56

    Google Scholar 

  • Jung D, Paradiso M, Wallacher D, Brandt A, Hartmann M (2009) Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties. ChemSusChem 2:161–164

    CAS  Google Scholar 

  • Kauffmann C, Petersen BR, Bjerrum MJ (1999) Enzymatic removal of phenols from aqueous solutions by Coprinus cinereus peroxidase and hydrogen peroxide. J Biotechnol 73:71–74

    CAS  Google Scholar 

  • Kaup BA, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99:491–498

    CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    CAS  Google Scholar 

  • Kim SJ, Shoda M (1999a) Decolorization of molasses and a dye by a newly isolated strain of the fungus Geotrichum candidum Dec 1. Biotechnol Bioeng 62:114–119

    CAS  Google Scholar 

  • Kim SJ, Shoda M (1999b) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  Google Scholar 

  • Kim SJ, Ishikawa K, Hirai M, Shoda M (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607

    CAS  Google Scholar 

  • Kim YH, An ES, Park SY, Lee J-O, Kim JH, Song BK (2007) Polymerization of bisphenol a using Coprinus cinereus peroxidase (CiP) and its application as a photoresist resin. J Mol Cat B 44:149–154

    CAS  Google Scholar 

  • Kim HS, Cho DH, Won K, Kim YH (2009) Inactivation of Coprinus cinereus peroxidase during the oxidation of various phenolic compounds originated from lignin. Enzyme Microb Technol 45:150–155

    CAS  Google Scholar 

  • Kinne M, Ullrich R, Hammel KE, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-Hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953

    CAS  Google Scholar 

  • Kinne M, Poraj-Kobielska M, Aranda E, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2009a) Regioselective preparation of 5-hydroxypropranolol and 4′-hydroxydiclofenac with a fungal peroxygenase. Bioorg Med Chem Lett 19:3085–3087

    CAS  Google Scholar 

  • Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009b) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:29343–29349

    CAS  Google Scholar 

  • Kinne M, Zeisig C, Ullrich R, Kayser G, Hammel KE, Hofrichter M (2010) Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase. Biochem Byophys Res Comm (accepted)

  • Kjalke M, Andersen MB, Schneider P, Christensen B, Schulein M, Welinder KG (1992) Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta 1120:248–256

    CAS  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    CAS  Google Scholar 

  • Klibanov AM (2003) Asymmetric enzymatic oxidoreductions in organic solvents. Curr Opin Biotechnol 14:427–431

    CAS  Google Scholar 

  • Kluge MG, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase. Appl Microbiol Biotechnol 75:1473–1478

    CAS  Google Scholar 

  • Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076

    CAS  Google Scholar 

  • Kolkman MA, van der Ploeg R, Bertels M, van Dijk M, van der Laan J, van Dijl JM, Ferrari E (2008) The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl Environ Microbiol 74:7507–7513

    CAS  Google Scholar 

  • Koskiniemi H, Metsa-Ketela M, Dobritzsch D, Kallio P, Korhonen H, Mantsala P, Schneider G, Niemi J (2007) Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. J Mol Biol 372:633–648

    CAS  Google Scholar 

  • Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci U S A 90:1242–1246

    CAS  Google Scholar 

  • Kühnel K, Blankenfeldt W, Terner J, Schlichting I (2006) Crystal structures of chloroperoxidase with its bound substrates and complexed with formate, acetate, and nitrate. J Biol Chem 281:23990–23998

    Google Scholar 

  • Kunishima N, Fukuyama K, Matsubara H, Hatanaka H, Shibano Y, Amachi T (1994) Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 A resolution. Structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol 235:331–344

    CAS  Google Scholar 

  • Lambeir AM, Dunford HB (1983) A kinetic and spectral study of the alkaline transitions of chloroperoxidase. Arch Biochem Biophys 220:549–556

    CAS  Google Scholar 

  • Lankinen P, Hildén K, Aro N, Salkinoja-Salonen M, Hatakka A (2005) Manganese peroxidase of Agaricus bisporus: grain bran-promoted production and gene characterization. Appl Microbiol Biotechnol 66:401–407

    CAS  Google Scholar 

  • Larrondo L, Gonzalez A, Perez Acle T, Cullen D, Vicuna R (2005) The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features. Biophys Chem 116:167–173

    CAS  Google Scholar 

  • Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P (2009) Biocatalysts for selective introduction of oxygen. Biocat Biotrans 27:1–26

    CAS  Google Scholar 

  • Libby RD, Thomas JA, Kaiser LW, Hager LP (1982) Chloroperoxidase halogenation reactions. Chemical versus enzymic halogenating intermediates. J Biol Chem 257:5030–5037

    CAS  Google Scholar 

  • Liers C, Ullrich R, Kinne M, Pecyna M, Kluge M, Aranda E, Scheibner K, Hofrichter M (2009) Oxidation of non-phenolic lignin model compounds by novel fungal peroxidases. Proceedings book of the INTB Conference on "Biotechnological Functionalisation of Advanced Fibre Reinforced Composites". University of Ghent, Ghent, pp. 238–243

  • Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85:1869–1879

    CAS  Google Scholar 

  • Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opin Chem Biol 3:28–34

    CAS  Google Scholar 

  • Liu JZ, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 7:23

    CAS  Google Scholar 

  • Liu KK-C, Wong C-H (1992) Enzymatic halohydration of glycals. J Org Chem 57:3748–3750

    CAS  Google Scholar 

  • Longoria A, Tinoco R, Vázquez-Duhalt R (2008) Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72:485–490

    CAS  Google Scholar 

  • Longoria AM, Hu H, Vazquez-Duhalt R (2009) Enzymatic synthesis of semiconductor polymers by chloroperoxidase of Caldariomyces fumago. Appl Biochem Biotechnol. doi:10.1007/s12010-009-8805-7

  • Lundell T (1993) Ligninolytic system of the white-rot fungus Phlebia radiata: Lignin model compound studies. Ph.D. Thesis (dissertation), Department of Applied Chemistry and Microbiology, University of Helsinki (Finland)

  • Lundell T, Schoemaker H, Hatakka A, Brunow G (1993a) New mechanism of the Cα-Cβ cleavage in non-phenolic arylglycerol β-aryl ether lignin substructures catalyzed by lignin peroxidase. Holzforschung 47:219–224

    CAS  Google Scholar 

  • Lundell T, Wever R, Floris R, Harvey P, Hatakka A, Brunow G, Schoemaker H (1993b) Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3, 4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1, 3-diol. Eur J Biochem 211:391–402

    CAS  Google Scholar 

  • Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes: ecological, functional and phylogenetic review. J Basic Microbiol 50:1–16

    Google Scholar 

  • Makris TM, Denisov I, Schlichting I, Sligar SG (2005) Activation of molecular oxygen by cytochrome P450. In: Ortiz De Montellano PR (ed) Cytochrome P450 - structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 149–182

    Google Scholar 

  • Manoj KM (2006) Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim Biophys Acta 1764:1325–1339

    CAS  Google Scholar 

  • Manoj KM, Hager LP (2006) A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. Anal Biochem 348:84–86

    CAS  Google Scholar 

  • Manoj KM, Hager LP (2008) Chloroperoxidase, a janus enzyme. Biochemistry 47:2997–3003

    CAS  Google Scholar 

  • Manoj KM, Lakner FJ, Hager LP (2000) Epoxidation of indene by chloroperoxidase. J Mol Catal B Enzym 9:107–111

    CAS  Google Scholar 

  • Marjamaa K, Hildén K, Kukkola E, Lehtonen M, Holkeri H, Haapaniemi P, Koutaniemi S, Teeri TH, Fagerstedt K, Lundell T (2006) Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Mol Biol 61:719–732

    CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol 30:425–444

    Google Scholar 

  • Martínez AT (2007) High redox potential peroxidases. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications, 1st edn. Springer-Verlag, Berlin, pp 475–486

    Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillen F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    Google Scholar 

  • Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, Del Rio JC, Gutierrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    CAS  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959

    CAS  Google Scholar 

  • Martínez MJ, Böckle B, Camarero S, Guillén F, Martínez AT (1996) MnP isoenzymes produced by two Pleurotus species in liquid culture and during wheat-straw solid-state fermentation ACS Symposium Series 655. American Chemical Society, Washington DC, pp 183–196

    Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    CAS  Google Scholar 

  • Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2, 4, 6-trinitrotoluene. Appl Environ Microbiol 60:187–194

    CAS  Google Scholar 

  • Miki K, Renganathan V, Gold MH (1986) Mechanism of β-aryl ether dimeric lignin model compound oxidation by lignin peroxidase of Phanerochaete chrysosporium. Biochemistry 25:4790–4796

    CAS  Google Scholar 

  • Miki K, Renganathan V, Mayfield MB, Gold MH (1987) Aromatic ring cleavage of a β-biphenyl ether dimer catalyzed by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett 210:199–203

    CAS  Google Scholar 

  • Miki Y, Tanaka H, Nakamura M, Wariishi Y (2006) Isolation and characterization of a novel lignin peroxidase from the white-rot basidiomycete Trametes cervina. J Fac Agr Kyushy Univ 51:99–104

    CAS  Google Scholar 

  • Miki Y, Morales M, Ruiz-Dueñas FJ, Martínez MJ, Wariishi H, Martínez AT (2009) Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue. Protein Expr Purif 68:208–214

    CAS  Google Scholar 

  • Moilanen A-M, Lundell T, Vares T, Hatakka A (1996) Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata. Appl Microbiol Biotechnol 45:792–799

    CAS  Google Scholar 

  • Moreira PR, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère JM, Malcata FX, Duarte JC (2005) Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol 118:339–352

    CAS  Google Scholar 

  • Morgan JA, Lu Z, Clark DS (2002) Toward the development of a biocatalytic system for oxidation of p-xylene to terephthalic acid: oxidation of 1, 4-benzenedimethanol. J Mol Catal B: Enz 18:147–154

    CAS  Google Scholar 

  • Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257

    CAS  Google Scholar 

  • Morris DR, Hager LP (1966) Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241:1763–1768

    CAS  Google Scholar 

  • Neidleman SL, Diassi PA, Junta B, Palmere RM, Pan SC (1966) The enzymatic halogenation of steroids. Tetrahedron Lett 44:5337–5342

    CAS  Google Scholar 

  • Newcomb M, Aebisher D, Shen R, Chandrasena RE, Hollenberg PF, Coon MJ (2003) Kinetic isotope effects implicate two electrophilic oxidants in cytochrome p450-catalyzed hydroxylations. J Am Chem Soc 125:6064–6065

    CAS  Google Scholar 

  • Nonaka D, Wariishi H, Welinder KG, Fujii H (2010) Paramagnetic 13C and 15N NMR analyses of the push and pull effects in cytochrome c peroxidase and Coprinus cinereus peroxidase variants: functional roles of highly conserved amino acids around heme. Biochemistry 49:49–57

    CAS  Google Scholar 

  • Nuell MJ, Fang GH, Axley MJ, Kenigsberg P, Hager LP (1988) Isolation and nucleotide sequence of the chloroperoxidase gene from Caldariomyces fumago. J Bacteriol 170:1007–1011

    CAS  Google Scholar 

  • Ogola HJ, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y (2009) Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 75:7509–7518

    CAS  Google Scholar 

  • Oliva M, Theiler G, Zamocky M, Koua D, Margis-Pinheiro M, Passardi F, Dunand C (2009) PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae. J Exp Bot 60:453–459

    CAS  Google Scholar 

  • Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338:404–409

    CAS  Google Scholar 

  • Omura T (2010) Structural diversity of cytochrome P450 enzyme systems. J Biotechnol 147:297–306

    Google Scholar 

  • Ortiz de Montellano P (2005) Cytochrome P450 - structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Ortiz de Montellano PR, de Voss JJ (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz De Montellano PR (ed) Cytochrome P450 - structure, mechanism and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 183–245

    Google Scholar 

  • Ortiz-Bermudez P, Srebotnik E, Hammel KE (2003) Chlorination and cleavage of lignin structures by fungal chloroperoxidases. Appl Environ Microbiol 69:5015–5018

    CAS  Google Scholar 

  • Ortiz-Bermudez P, Hirth KC, Srebotnik E, Hammel KE (2007) Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc Natl Acad Sci U S A 104:3895–3900

    CAS  Google Scholar 

  • Osborne RL, Coggins MK, Terner J, Dawson JH (2007) Caldariomyces fumago chloroperoxidase catalyzes the oxidative dehalogenation of chlorophenols by a mechanism involving two one-electron steps. J Am Chem Soc 129:14838–14389

    CAS  Google Scholar 

  • Otey CR, Landwehr M, Endelman JB, Hiraga K, Bloom JD, Arnold FH (2006) Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol 4:e112

    Google Scholar 

  • Park JB, Clark DS (2006) Deactivation mechanisms of chloroperoxidase during biotransformations. Biotechnol Bioeng 93:1190–1195

    CAS  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    CAS  Google Scholar 

  • Passardi F, Bakalovic N, Teixeira FK, Margis-Pinheiro M, Penel C, Dunand C (2007a) Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 89:567–579

    CAS  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007b) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    CAS  Google Scholar 

  • Pecyna MJ, Schnorr KM, Ullrich R, Scheibner K, Kluge M, Hofrichter M (2008) Fungal peroxygenases and methods of application. patent, WO 2008/119780 A2

  • Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84:885–897

    CAS  Google Scholar 

  • Peng L, Wollenberger U, Hofrichter M, Ullrich R, Scheibner K, Scheller FW (2009) Bioelectrocatalytic properties of Agrocybe aegerita peroxygenase. Electrochimica Acta. doi:10.1016/j.electacta.2009.12.065

  • Perez DI, Grau MM, Arends IW, Hollmann F (2009) Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem Commun (Camb):6848-6850

  • Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Google Scholar 

  • Petersen JF, Kadziola A, Larsen S (1994) Three-dimensional structure of a recombinant peroxidase from Coprinus cinereus at 2.6 A resolution. FEBS Lett 339:291–296

    CAS  Google Scholar 

  • Petrides PE, Nauseef WM (2000) The peroxidase multigene family of enzymes: Biochemical basis and clinical applications 1st edn. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Piontek K, Glumoff T, Winterhalter K (1993) Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Lett 315:119–124

    CAS  Google Scholar 

  • Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116

    CAS  Google Scholar 

  • Piontek K, Ullrich R, Liers C, Diederichs K, Plattner D, Hofrichter M (2010) Crystallization of a 45 kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: doi:10.1107/S1744309110013515

  • Poulos TL (1993) Peroxidases. Curr Opin Biotechnol 4:484–489

    CAS  Google Scholar 

  • Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J (1978) Crystallographic determination of the heme orientation and location of the cyanide binding site in yeast cytochrome c peroxidase. J Biol Chem 253:3730–3735

    CAS  Google Scholar 

  • Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem 268:4429–4440

    CAS  Google Scholar 

  • Prieto MA, Perez-Aranda A, Garcia JL (1993) Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range. J Bacteriol 175:2162–2167

    CAS  Google Scholar 

  • Pühse M, Szweda RT, Ma Y, Jeworrek C, Winter R, Zorn H (2009) Marasmius scorodonius extracellular dimeric peroxidase—exploring its temperature and pressure stability. Biochim Biophys Acta 1794:1091–1098

    Google Scholar 

  • Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340

    CAS  Google Scholar 

  • Ramakrishnan K, Oppenhuizen ME, Saunders S, Fisher J (1983) Stereoselectivity of chloroperoxidase-dependent halogenation. Biochemistry 22:3271–3277

    CAS  Google Scholar 

  • Reynolds DR, Faull JL (2001) Proposals to conserve the name Caldariomyces against Leptoxyphium and the name C. fumago with a conserved type (Ascomycota, mitosporic Euascomycetes). Taxon 50:1183–1184

    Google Scholar 

  • Robertson DE, Richardson T, Kustedjo K, Amitai G, Lejeune K, Berberich J, Chaplin JA, Sinclair J (2008) Enzymes and formulations for broad-specificity decontamination of chemical and biological warfare agents. patent, WO/2008/036061

  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Mate MJ, Romero A, Martínez MJ, Smith AT, Martínez AT (2008) Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry 47:1685–1695

    Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Garcia E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Google Scholar 

  • Sakurai T, Kataoka K (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 7:220–229

    CAS  Google Scholar 

  • Sanfilippo C, Nicolosi G (2002) Catalytic behaviour of chloroperoxidase from Caldariomyces fumago in the oxidation of cyclic conjugated dienes. Tetrahedron Asymmetr 13:1889–1892

    CAS  Google Scholar 

  • Sanfilippo C, D'Antona N, Nicolosi G (2004) Chloroperoxidase from Caldariomyces fumago is active in the presence of an ionic liquid as co-solvent. Biotechnol Lett 26:1815–1819

    CAS  Google Scholar 

  • Sasaki S, Nonaka D, Wariishi H, Tsutsumi Y, Kondo R (2008) Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin. Phytochemistry 69:348–355

    CAS  Google Scholar 

  • Sato T, Hara S, Matsui T, Sazaki G, Saijo S, Ganbe T, Tanaka N, Sugano Y, Shoda M (2004) A unique dye-decolorizing peroxidase, DyP, from Thanatephorus cucumeris Dec 1: heterologous expression, crystallization and preliminary X-ray analysis. Acta Crystallogr D Biol Crystallogr 60:149–152

    Google Scholar 

  • Savitsky PA, Gazaryan IG, Tishkov VI, Lagrimini LM, Ruzgas T, Gorton L (1999) Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. Biochem J 340(Pt3):579–583

    CAS  Google Scholar 

  • Scheibner M, Hulsdau B, Zelena K, Nimtz M, de Boer L, Berger RG, Zorn H (2008) Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Appl Microbiol Biotechnol 77:1241–1250

    CAS  Google Scholar 

  • Schmid RD, Urlacher V (2007) Modern biooxidation enzymes, reactions and applications, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Schoemaker HE, Lundell T, Hatakka A, Piontek K (1994) The oxidation of veratryl alcohol, dimeric lignin models and lignin by lignin peroxidase: the redox cycle revisioned. FEMS Microbiol Rev 13:321–332

    CAS  Google Scholar 

  • Schomburg D, Schomburg I (2006) Class 1 oxidoreductases X. Springer handbook of enzymes, 2nd edn., vol. 25. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Seelbach K, van Deurzen MP, van Rantwijk F, Sheldon RA, Kragl U (1997) Improvement of the total turnover number and space-time yield for chloroperoxidase catalyzed oxidation. Biotechnol Bioeng 55:283–288

    CAS  Google Scholar 

  • Shaw PD, Hager LP (1959) Biological chlorination. III. beta-Ketoadipate chlorinase: a soluble enzyme system. J Biol Chem 234:2565–2569

    CAS  Google Scholar 

  • Shimokawa T, Shoda M, Sugano Y (2009) Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in an air-membrane surface bioreactor. J Biosci Bioeng 107:113–115

    CAS  Google Scholar 

  • Singer R (1949) The Agaricales in modern taxonomy. Lilloa 22:1–832, published in 1951

    Google Scholar 

  • Smith AT, Doyle WA (2006) Engineered peroxidases with veratryl alcohol oxidase activity. patent, WO/2006/114616

  • Smith AT, Doyle WA, Dorlet P, Ivancich A (2009) Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase. Proc Natl Acad Sci U S A 106:16084–16089

    CAS  Google Scholar 

  • Sturm A, Schierhorn A, Lindenstrauss U, Lilie H, Bruser T (2006) YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J Biol Chem 281:13972–13978

    CAS  Google Scholar 

  • Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403

    CAS  Google Scholar 

  • Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417

    CAS  Google Scholar 

  • Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758

    CAS  Google Scholar 

  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658

    CAS  Google Scholar 

  • Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M (2009) Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation 20:433–440

    CAS  Google Scholar 

  • Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73:1793–1798

    CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 269:32759–32767

    CAS  Google Scholar 

  • Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1377

    CAS  Google Scholar 

  • Sundaramoorthy M, Youngs HL, Gold MH, Poulos TL (2005) High-resolution crystal structure of manganese peroxidase: substrate and inhibitor complexes. Biochemistry 44:6463–6470

    CAS  Google Scholar 

  • Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HP (1997) Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. J Biol Chem 272:24257–24265

    CAS  Google Scholar 

  • Syoda M, Sugano Y, Kubota H (2006) Enzyme having decolorizing activity and method for decolorizing dyes by using the same. patent, 7041486 B1

  • Tassaneeyakul W, Veronese ME, Birkett DJ, Gonzalez FJ, Miners JO (1993) Validation of 4-nitrophenol as an in vitro substrate probe for human liver CYP2E1 using cDNA expression and microsomal kinetic techniques. Biochem Pharmacol 46:1975–1981

    CAS  Google Scholar 

  • ten Have R, Hartmans S, Teunissen PJ, Field JA (1998) Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett 422:391–394

    Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Meth Enzymol 161:238–249

    CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3, 4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem 261:1687–1693

    CAS  Google Scholar 

  • Torres Pazmiño DE, Dudek HM, Fraaije MW (2009) Baeyer–Villiger monooxygenases: recent advances and future challenges. Curr Opin Chem Biol 14:1–7

    Google Scholar 

  • Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279:158–166

    CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250

    CAS  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    CAS  Google Scholar 

  • Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    CAS  Google Scholar 

  • Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106

    CAS  Google Scholar 

  • Ullrich R, Liers C, Schimpke S, Hofrichter M (2009) Purification of homogeneous forms of fungal peroxygenase. Biotechnol J 4:1619–1626

    CAS  Google Scholar 

  • Urzúa U, Kersten PJ, Vicuña R (1998) Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64:68–73

    Google Scholar 

  • van Bloois E, Torres Pazmiño DE, Winter RT, Fraaije MW (2009) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2369-x

  • van de Velde F, Bakker M, van Rantwijk F, Sheldon RA (2001) Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnol Bioeng 72:523–529

    Google Scholar 

  • van der Veen BS, de Winther MP, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11:2899–2937

    Google Scholar 

  • van Peé KH (2001) Microbial biosynthesis of halometabolites. Arch Microbiol 175:250–258

    Google Scholar 

  • van Peé KH, Zehner S (2003) Enzymology and molecular genetics of biological halogenation. In: Gribble GW (ed) Natural production of organohalogen compounds, 1st edn. Springer-Verlag, Berlin, Heidelberg, pp 171–199

    Google Scholar 

  • van Rantwijk F, Sheldon RA (2000) Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Curr Opin Biotechnol 11:554–564

    Google Scholar 

  • Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microbiol 60:569–575

    CAS  Google Scholar 

  • Vázquez-Duhalt R, del Pilar Bremauntz M, Barzana E, Tinoco R (2002) Enzymatic oxidation process for desulfurization of fossil fuels. patent, 6461859 B1

  • Wagner C, Molitor IM, Konig GM (2008) Critical view on the monochlorodimedone assay utilized to detect haloperoxidase activity. Phytochemistry 69:323–332

    CAS  Google Scholar 

  • Wang W, Xu Y, Wang DI, Li Z (2009) Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. J Am Chem Soc 131:12892–12893

    CAS  Google Scholar 

  • Wariishi H, Gold MH (1990) Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem 265:2070–2077

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176:269–275

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    CAS  Google Scholar 

  • Wariishi H, Sheng D, Gold MH (1994) Oxidation of ferrocytochrome c by lignin peroxidase. Biochemistry 33:5545–5552

    CAS  Google Scholar 

  • Welinder K (1992) Plant peroxidases: structure–function relationships. In: Penel C, Gaspar T, Greppin H (eds) Plant peroxidases, topics and detailed literature on molecular, biochemical and physiological aspects. Université de Genève, Genève, pp 1–24

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    CAS  Google Scholar 

  • Wilson AW, Desjardin DE (2005) Phylogenetic relationships in the gymnopoid and marasmioid fungi (Basidiomycetes, euagarics clade). Mycologia 97:667–679

    CAS  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    CAS  Google Scholar 

  • Young L, Yu J (1997) Ligninase-catalysed decolorization of synthetic dyes. Water Res 31:1187–1193

    CAS  Google Scholar 

  • Zamocky M, Jakopitsch C, Furtmuller PG, Dunand C, Obinger C (2008) The peroxidase-cyclooxygenase superfamily: Reconstructed evolution of critical enzymes of the innate immune system. Proteins 72:589–605

    CAS  Google Scholar 

  • Zamocky M, Furtmuller PG, Obinger C (2009) Two distinct groups of fungal catalase/peroxidases. Biochem Soc Trans 37:772–777

    CAS  Google Scholar 

  • Zelena K, Hardebusch B, Hulsdau B, Berger RG, Zorn H (2009a) Generation of norisoprenoid flavors from carotenoids by fungal peroxidases. J Agric Food Chem 57:9951–9955

    CAS  Google Scholar 

  • Zelena K, Zorn H, Nimtz M, Berger RG (2009b) Heterologous expression of the msp2 gene from Marasmius scorodonius. Arch Microbiol 191:397–402

    CAS  Google Scholar 

  • Zhang LH, Bai CH, Wang YS, Jiang YC, Hu MC, Li SN, Zhai QG (2009) Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes. Biotechnol Lett 31:1269–1272

    CAS  Google Scholar 

  • Zorn H, Scheibner M, Hülsdau B, Berger RG, de Boer L, Meima RB (2005) Novel enzymes for use in enzymatic bleaching of food products. patent, EP 64132 20060712

  • Zorn H, Szweda RT, Wilms J, Kumar M (2008) Method for modifying non-starch carbohydrate material. patent, 26485/EP/P0

  • Zubieta C, Joseph R, Krishna SS, McMullan D, Kapoor M, Axelrod HL, Miller MD, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2007a) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins 69:234–243

    CAS  Google Scholar 

  • Zubieta C, Krishna SS, Kapoor M, Kozbial P, McMullan D, Axelrod HL, Miller MD, Abdubek P, Ambing E, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Hampton E, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2007b) Crystal structures of two novel dye-decolorizing peroxidases reveal a beta-barrel fold with a conserved heme-binding motif. Proteins 69:223–233

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our coworkers I. Kluge, M. Kinne, M. Poraj-Kobielska, S. Peter, C. Dolge, M. Rotter, and K. Barková for their support with data and their know-how. Scientific work has been supported by the European Union (integrated project Biorenew), the Deutsche Bundestiftung Umwelt (DBU, projects “Pilzliche Sekretome” and “Neuartige Peroxygenasen”), as well as the Deutsche Forschungsgemeinschaft (DFG; projects Fupers and Funwood within the Priority Programme 1374 - Biodiversity Exploratories).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Ullrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 33 kb)

ESM 2

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofrichter, M., Ullrich, R., Pecyna, M.J. et al. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87, 871–897 (2010). https://doi.org/10.1007/s00253-010-2633-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2633-0

Keywords

Navigation