Skip to main content
Log in

Expression of four β-galactosidases from Bifidobacterium bifidum NCIMB41171 and their contribution on the hydrolysis and synthesis of galactooligosaccharides

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper deals with two aspects tightly related to the enzymatic characteristics and expression of four β-galactosidases (BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171. The growth patterns of this strain indicated a preference towards complex (i.e. lactose, galactooligosaccharides (GOSs)) rather than simple carbohydrates (i.e. glucose and galactose) and a collaborative action and synergistic relation of more than one β-galactosidase isoenzyme for either lactose or GOS hydrolysis and subsequent assimilation. Native polyacrylamide gel electrophoresis analysis of protein extracts from cells growing on different carbohydrates (i.e. glucose, lactose or GOS) indicated that two lactose hydrolysing enzymes (BbgI and BbgIII) and one GOS hydrolysing enzyme (BbgII) were constitutively expressed, whereas a fourth lactose hydrolysing enzyme (BbgIV) was induced in the presence of lactose or different GOS fractions. Furthermore, the β-galactosidase expression profiles of B. bifidum cells and the transgalactosylating properties of each individual isoenzyme, with lactose as substrate, clearly indicated that mainly three isoenzymes (BbgI, BbgIII and BbgIV) are implicated in GOS synthesis when whole B. bifidum cells are utilised. Two of the isoenzymes (BbgI and BbgIV) proved to have better transgalactosylating properties giving yields ranging from 42% to 47% whereas the rest (BbgI and BbgIII) showed lower yields (15% and 29%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bezkorovainy A, Miller-Catchpole R (eds) (1989) Biochemistry and physiology of bifidobacteria. CRC, Boca Raton, FL

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Biavati B, Mattarelli P (2001) The family Bifidobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 1–70

    Google Scholar 

  • Boon MA, van’t Riet K, Janssen AEM (2000) Enzymatic synthesis of oligosaccharides product removal during a kinetically controlled reaction. Biotechnol Bioeng 70:411–420

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:1052S–1057S

    Article  CAS  PubMed  Google Scholar 

  • Crout DHG, Vic G (1998) Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol 2:98–111

    Article  CAS  PubMed  Google Scholar 

  • Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87:785–789

    Article  CAS  PubMed  Google Scholar 

  • Dionex Corporation (2001) Determination of trans-galactooligosaccharides in foods by AOAC method 2001.02. Application note 155; Sunnyvale, CA

  • Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K (2005) Identification and molecular cloning of a novel glycoside hydrolase of core 1 type o-glycan-specific endo-α-N-acetylgalactosamine from Bifidobacterium longum. J Biol Chem 280:37415–37422

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Goulas A, Tzortzis G, Gibson GR (2007a) Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171. Int Dairy J 17:648–656

    Article  CAS  Google Scholar 

  • Goulas T, Goulas A, Tzortzis G, Gibson GR (2007b) Molecular cloning and comparative analysis of four β-galactosidase genes from Bifidobacterium bifidum NCIMB41171. Appl Microbiol Biotechnol 76:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Goulas T, Tzortzis G, Gibson GR, Ward D, Mehta T, Young S, Jaffe D, Gnerre S, Berlin A, Heiman D, Hepburn T, Shea T, Sykes S, Alvarado L, Kodira C, Lander E, Galagan J, Nusbaum C Birren B (2008) The genome sequence of Bifidobacterium bifidum strain NCIMB 41171. Published in NCBI Database

  • Goulas T, Goulas A, Tzortzis G, Gibson GR (2009) Comparative analysis of four β-galactosidases from Bifidobacterium bifidum NCIMB41171: purification and biochemical characterisation. Appl Microbiol Biotechnol 82:1079–1088

    Article  PubMed  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  • Hansson T, Adlercreutz P (2001) Optimisation of galactooligo-saccharide production from lactose using β-galactosidases from hyperthermophiles. Food Biotechnol 15:79–97

    Article  CAS  Google Scholar 

  • Hinz SW, van den Broek LA, Beldman G, Vincken JP, Voragen AG (2004) β-Galactosidase from Bifidobacterium adolescentis DSM20083 prefers β(1, 4)-galactosides over lactose. Appl Microbiol Biotechnol 66:276–284

    Article  CAS  PubMed  Google Scholar 

  • Hung MN, Xia Z, Hu NT, Lee B (2001) Molecular and biochemical analysis of two β-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 67:4256–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, Yamanoi T, Kumagai H, Yamamoto K (2004) Molecular cloning and characterization of Bifidobacterium bifidum 1, 2-α-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol 186:4885–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaoka M, Tian J, Nishimoto M (2005) Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 71:3158–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzewinski F, Brassart C, Gavini F, Bouquelet S (1996) Characterization of the lactose transport system in the strain Bifidobacterium bifidum DSM 20082. Curr Microbiol 32:301–307

    Article  CAS  PubMed  Google Scholar 

  • Krzewinski F, Brassart C, Gavini F, Bouquelet S (1997) Glucose and galactose transport in Bifidobacterium bifidum DSM 20082. Curr Microbiol 35:175–179

    Article  CAS  PubMed  Google Scholar 

  • Leahy SC, Higgins DG, Fitsgerald GF, van Sinderen D (2005) Getting better with bifidobacteria. J Appl Microbiol 98:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344

    CAS  PubMed  Google Scholar 

  • Mahoney RR (1998) Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chem 63:147–154

    Article  CAS  Google Scholar 

  • Møller PL, Jørgensen F, Hansen OC, Madsen SM, Stougaard P (2001) Intra- and extracellular β-galactosidases from Bifidobacterium bifidum and B. infantis: Molecular cloning, heterologous expression, and comparative characterisation. Appl Environ Microbiol 67:2276–2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Prenosil JE, Stuker E, Bourne JR (1987) Formation of oligosaccharides during enzymatic lactose: part I: state of the art. Biotechnol Bioeng 30:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, Sanz J, Castro IM (2004) Gas chromatographic–mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey. J Chromat A 1059:143–148

    Article  CAS  Google Scholar 

  • Scardovi V (1986) Genus Bifidobacterium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1418–1434

    Google Scholar 

  • Schell MA, Karmiratzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore DR, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Tsuda Y, Kanou N, Inoue T, Kumazaki K, Nagano S, Hirai S, Tanaka K, Watanabe K (2006) Bifidobacterium adolescentis complete genome sequence. Published in NCBI Database

  • Tannock GW (2002) Probiotics and Prebiotics: Where are we going? In: Tannock GW (ed) Probiotics and prebiotics: where are we going?. Caister Academic, Wymondham, UK, pp 1–39

    Google Scholar 

  • Tochikura T, Sakai K, Fujiyoshi T, Tachiki T, Kumagai H (1986) p-Nitrophenyl glycoside-hydrolysing activities in Bifidobacteria and characterisation of β-D-galactosidase of Bifidobacterium longum 401. Agric Biol Chem 50:2279–2286

    CAS  Google Scholar 

  • Tzortzis G, Goulas AK, Gibson GR (2005) Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68:412–416

    Article  CAS  PubMed  Google Scholar 

  • van Laere KM, Abee T, Schols HA, Beldman G, Voragen AG (2000) Characterisation of a novel β-galactosidase from Bifidobacterium adolescentis DSM 20083 active towards transgalactooligosaccharides. Appl Environ Microbiol 66:1379–1384

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Goulas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulas, T., Goulas, A., Tzortzis, G. et al. Expression of four β-galactosidases from Bifidobacterium bifidum NCIMB41171 and their contribution on the hydrolysis and synthesis of galactooligosaccharides. Appl Microbiol Biotechnol 84, 899–907 (2009). https://doi.org/10.1007/s00253-009-2009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2009-5

Keywords

Navigation