Skip to main content
Log in

A periplasmic, pyridoxal-5′-phosphate-dependent amino acid racemase in Pseudomonas taetrolens

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The pyridoxal-5′-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical procedures. The racemase was biochemically characterized and amongst other aspects it was confirmed that it is mostly active with lysine, arginine and ornithine, but merely weakly active with alanine, whereas the alanine racemase of the same organism studied in comparison acts on alanine only. Unexpectedly, sequencing the amino-terminal end of ArgR revealed processing of the protein, with a signal peptide cleaved off. Subsequent localization studies demonstrated that in both P. taetrolens and E. coli ArgR activity was almost exclusively present in the periplasm, a feature so far unknown for any amino acid racemase. An ArgR-derivative carrying a carboxy-terminal His-tag was made and this was demonstrated to localize even in an E. coli mutant devoid of the twin-arginine translocation (Tat) pathway in the periplasm. These data indicate that ArgR is synthesized as a prepeptide and translocated in a Tat-independent manner. We therefore propose that ArgR translocation depends on the Sec system and a post-translocational insertion of PLP occurs. As further experiments showed, ArgR is necessary for the catabolism of d-arginine and d-lysine by P. taetrolens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Freudl R, Sprenger GA (2003) Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185:2811–2819

    Article  CAS  Google Scholar 

  • Chen HP, Lin CF, Lee YJ, Tsay SS, Wu SH (2000) Purification and properties of ornithine racemase from Clostridium sticklandii. J Bacteriol 182:2052–2054

    Article  CAS  Google Scholar 

  • Craven GR, Steers E Jr, Anfinsen CB (1965) Purification, composition, and molecular weight of the beta-galactosidase of Escherichia coli K12. J Biol Chem 40:2468–2477

    Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  CAS  Google Scholar 

  • Inagaki K, Tanizawa K, Tanaka H, Soda K (1984) Purification and properties of amino acid racemase from Aeromonas punctata subsp. caviae. Prog Clin Biol Res 144A:355–363

    CAS  PubMed  Google Scholar 

  • Kino K, Sato M, Yoneyama M, Kirimura K (2007) Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996. Appl Microbiol Biotechnol 73:1299–1305

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Kreutzenbeck P, Kröger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R (2007) Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J Biol Chem 282:7903–7911

    Article  CAS  Google Scholar 

  • Lim YH, Yokoigawa K, Esaki N, Soda K (1993) A new amino acid racemase with threonine alpha-epimerase activity from Pseudomonas putida: purification and characterization. J Bacteriol 175:4213–4217

    Article  CAS  Google Scholar 

  • Morita YS, Sena CB, Waller RF, Kurokawa K, Sernee MF, Nakatani F, Haites RE, Billman-Jacobe H, McConville MJ, Maeda Y, Kinoshita T (2006) PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 281:25143–25155

    Article  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  Google Scholar 

  • Oikawa T, Tauch A, Schaffer S, Fujioka T (2006) Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J Biotechnol 125:503–512

    Article  CAS  Google Scholar 

  • Okubo Y, Yokoigawa K, Esaki N, Soda K, Kawai H (1999) Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus. Biochem Biophys Res Commun 256:333–340

    Article  CAS  Google Scholar 

  • Ono K, Yanagida K, Oikawa T, Ogawa T, Soda K (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry 67:856–860

    Article  CAS  Google Scholar 

  • Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180

    Article  CAS  Google Scholar 

  • Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL (2005) Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510

    Article  CAS  Google Scholar 

  • Roise D, Soda K, Yagi T, Walsh CT (1984) Inactivation of the Pseudomonas striata broad specificity amino acid racemase by d and l isomers of beta-substituted alanines: kinetics, stoichiometry, active site peptide, and mechanistic studies. Biochemistry 23:5195–5201

    Article  CAS  Google Scholar 

  • Schlesinger MJ, Olsen R (1968) Expression and localization of Escherichia coli alkaline phosphatase synthesized in Salmonella typhimurium cytoplasm. J Bacteriol 96:1601–1605

    Article  CAS  Google Scholar 

  • Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK (2008) Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512–5516

    Article  CAS  Google Scholar 

  • Stalon V, Ramos F, Piérard A, Wiame JM (1967) The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta 139:91–97

    Article  CAS  Google Scholar 

  • Strych U, Huang HC, Krause KL, Benedik MJ (2000) Characterization of the alanine racemases from Pseudomonas aeruginosa PAO1. Curr Microbiol 41:290–294

    Article  CAS  Google Scholar 

  • Wild J, Hennig J, Lobocka M, Walczak W, Kłopotowski T (1985) Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Mol Gen Genet 198:15–22

    Article  Google Scholar 

  • Yagi T, Misono H, Kurihara N, Yamamoto T, Soda K (1980) l-Lysine: 2-oxoglutarate 6-aminotransferase. Subunit structure composed of non-identical polypeptides and pyridoxal 5'-phosphate-binding subunit. J Biochem 87:1395–1402

    Article  CAS  Google Scholar 

  • Yamanishi Y, Mihara H, Osaki M, Muramatsu H, Esaki N, Sato T, Hizukuri Y, Goto S, Kanehisa M (2007) Prediction of missing enzyme genes in a bacterial metabolic network. Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa. FEBS J 274:2262–2273

    Article  CAS  Google Scholar 

  • Yorifuji T, Ogata K (1971) Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties. J Biol Chem 246:5085–5092

    CAS  PubMed  Google Scholar 

  • Yorifuji T, Misono H, Soda K (1971) Arginine racemase of Pseudomonas graveolens. II. Racemization and transamination of ornithine catalyzed by arginine racemase. J Biol Chem 246:5093–5101

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank A. Tauch (Bielefeld University, Germany) for support with preparation of integration mutants, Y. Gougami (Kansai University) for support with sequencing, and T. Polen (Forschungszentrum Juelich) for help with automatic blast analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Oikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, D., Oikawa, T., Arakawa, N. et al. A periplasmic, pyridoxal-5′-phosphate-dependent amino acid racemase in Pseudomonas taetrolens . Appl Microbiol Biotechnol 83, 1045–1054 (2009). https://doi.org/10.1007/s00253-009-1942-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1942-7

Keywords

Navigation