Skip to main content
Log in

Molecular cloning and enzymological characterization of pyridoxal 5′-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5′-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on l-cysteic acid and l-cysteine sulfinic acid in addition to d- and l-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. d-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AspR:

Aspartate racemase

DTT:

Dithiothreitol

KPB:

Potassium phosphate buffer

LB:

Luria-Bertani

PLP:

Pyridoxal 5′-phosphate

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulfate

References

  • Aihara T, Ito T, Yamanaka Y, Noguchi K, Odaka M, Sekine M, Homma H, Yohda M (2016) Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus. Extremophiles 20(4):385–393

    Article  CAS  PubMed  Google Scholar 

  • Andreotti G, Cubellis MV, Nitti G, Sannia G, Mai X, Marino G, Adams MW (1994) Characterization of aromatic aminotransferases from the hyperthermophilic archaeon Thermococcus litoralis. Eur J Biochem 220(2):543–549

    Article  CAS  PubMed  Google Scholar 

  • Aswad DW (1984) Determination of d- and l-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal Biochem 137(3):405–409

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Esaki N, Yoshimura T, Soda K (1992) Reaction mechanism of glutamate racemase, a pyridoxal phosphate-independent amino acid racemase. J Biochem 112(1):139–142

    CAS  PubMed  Google Scholar 

  • D’Aniello A, Di Cosmo A, Di Cristo C, Annunziato L, Petrucelli L, Fisher G (1996) Involvement of d-aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59(2):97–104

    Article  PubMed  Google Scholar 

  • Fadda E, Danysz W, Wroblewski JT, Costa E (1988) Glycine and d-serine increase the affinity of N-methyl-d-aspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology 27(11):1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Yamauchi T, Ishiyama M, Gogami Y, Oikawa T, Hata Y (2015) Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893. Acta Crystallogr F Struct Biol Commun 71(Pt 8):1012–1016. doi:10.1107/S2053230X15010572 (epub 28 Jul 2015)

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Sato A, Okamoto Y, Yamauchi T, Kato S, Yoshida M, Oikawa T, Hata Y (2016) The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005 provides insights into the reaction mechanism of enzymes in its original family. Proteins. doi:10.1002/prot.25046

    PubMed  Google Scholar 

  • Gogami Y, Ito K, Kamitani Y, Matsushima Y, Oikawa T (2009) Occurrence of d-serine in rice and characterization of rice serine racemase. Phytochemistry 70(3):380–387

    Article  CAS  PubMed  Google Scholar 

  • Gogami Y, Okada K, Oikawa T (2011) High-performance liquid chromatography analysis of naturally occurring d-amino acids in sake. J Chromatogr B Anal Technol Biomed Life Sci 879(29):3259–3267

    Article  CAS  Google Scholar 

  • Kita A, Tasaki S, Yohda M, Miki K (2008) Crystal structure of PH1733, an aspartate racemase homologue, from Pyrococcus horikoshii OT3. Proteins 74:240–244

    Article  Google Scholar 

  • Lambert MP, Neuhaus FC (1972) Mechanism of d-cycloserine action: alanine racemase from Escherichia coli WV. J Bacteriol 110:978–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu L, Iwata K, Kita A, Kawarabayasi Y, Yohda M, Miki K (2002) Crystal structure of aspartate racemase from Pyrococcus horikoshii OT3 and its implications for molecular mechanism of PLP-independent racemization. J Mol Biol 319(2):479–489

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Lee JA, Okamoto T, Sekine M, Nimura N, Imai K, Yohda M, Maruyama T, Sumi M, Kamo N, Yamagishi A, Oshima T, Homma H (2001) Occurrence of d-amino acids and a pyridoxal 5′-phosphate-dependent aspartate racemase in the acidothermophilic archaeon, Thermoplasma acidophilum. Biochem Biophys Res Commun 281(2):317–321

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Robb FT, Adams MW (1994) Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol 60(2):562–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui D, Oikawa T, Arakawa N, Osumi S, Lausberg F, Stäbler N, Freudl R, Eggeling L (2009) A periplasmic, pyridoxal-5′-phosphate-dependent amino acid racemase in pseudomonas taetrolens. Appl Microbiol Biotechnol 83:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M (1999) Occurrence of free d-amino acids and aspartate racemases in hyperthermophilic archaea. J Bacteriol 181(20):6560–6563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacterial. Arch Microbiol 153:205–207

    Article  Google Scholar 

  • Oikawa T, Tauch A, Schaffer S, Fujioka T (2006) Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J Biotech 125:503–512

    Article  CAS  Google Scholar 

  • Okada H, Yohda M, Giga-Hama Y, Ueno Y, Ohdo S, Kumagai H (1991) Distribution and purification of asparate racemase in lactic acid bacteria. Biochim Biophys Acta 1078:377–382

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Abeles RH (1975) Reaction mechanism and structure of the active site of proline racemase. Biochemistry 14(20):4515–4522

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada RH (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B Biochem Mol Biol 134(2):307–314

    Article  PubMed  Google Scholar 

  • Toogood HS, Hollingsworth EJ, Brown RC, Taylor IN, Taylor SJ, McCague R, Littlechild JA (2002) A thermostable l-aminoacylase from Thermococcus litoralis: cloning, overexpression, characterization, and applications in biotransformations. Extremophiles 6(2):111–122

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Hayashi H, Washio T, Yamasaki R, Kato S, Oikawa T (2014) Cloning and characterization of a novel fold-type I branched-chain amino acid aminotransferase from the hyperthermophilic archaeon Thermococcus sp. CKU-1. Extremophiles 18(3):589–602

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Tanimoto Y, Nishiwaki H, Watanabe Y (2015) Identification and characterization of bifunctional proline racemase/hydroxyproline epimerase from archaea: discrimination of substrates and molecular evolution. PLoS One 10(3):e0120349

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Ashiuchi M, Ohnishi K, Kato S, Nagata S, Misono H (2004) Molecular identification of monomeric aspartate racemase from Bifidobacterium bifidum. Eur J Biochem 271:4798–4803

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5'-phosphate-independent amino acid racemase. J Biol Chem 267(26):18361–18364

    CAS  PubMed  Google Scholar 

  • Yoshida T, Seko T, Okada O, Iwata K, Liu L, Miki K, Yohda M (2006) Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature. Proteins 64(2):502–512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Taro Hirozane for his construction of pET 11b-Tl-aspr. This study was supported in part by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)—Supported Program for the Strategic Research Foundation at Private Universities, 2013–2017. This research was financially supported in part by the Kansai University Grant-in-Aid for progress of research in graduate course, 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadao Oikawa.

Additional information

Communicated by H. Atomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Washio, T., Kato, S. & Oikawa, T. Molecular cloning and enzymological characterization of pyridoxal 5′-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473. Extremophiles 20, 711–721 (2016). https://doi.org/10.1007/s00792-016-0860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0860-8

Keywords

Navigation