Skip to main content
Log in

Impact of pitching rate on yeast fermentation performance and beer flavour

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the impact of the pitching rate on crucial fermentation and beer quality parameters has never been assessed systematically. In this study, five pitching rates were applied to lab-scale fermentations to investigate its impact on the yeast physiology and beer quality. The fermentation rate increased significantly and the net yeast growth was lowered with increasing pitching rate, without affecting significantly the viability and the vitality of the yeast population. The build-up of unsaturated fatty acids in the initial phase of the fermentation was repressed when higher yeast concentrations were pitched. The expression levels of the genes HSP104 and HSP12 and the concentration of trehalose were higher with increased pitching rates, suggesting a moderate exposure to stress in case of higher cell concentrations. The influence of pitching rate on aroma compound production was rather limited, with the exception of total diacetyl levels, which strongly increased with the pitching rate. These results demonstrate that most aspects of the yeast physiology and flavour balance are not significantly or negatively affected when the pitching rate is changed. However, further research is needed to fully optimise the conditions for brewing beer with high cell density populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amorós M, Estruch F (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Mol Microbiol 39:1523–1532

    Article  PubMed  Google Scholar 

  • Aries V, Kirsop BH (1977) Sterol synthesis in relation to growth and fermentation by brewing inoculated at different concentrations. J Inst Brew 83:220–223

    Article  CAS  Google Scholar 

  • Boswell CD, Nienow AW, Hewitt CJ (2002) Studies on the effect of mechanical agitation on the performance of brewing fermentations: fermentation rate, yeast physiology, and development of flavor compounds. J Am Soc Brew Chem 60:101–106

    CAS  Google Scholar 

  • Boulton CA (2000) Trehalose, glycogen and sterol. In: Smart KA (ed) Brewing yeast fermentation performance, 1st edn. Blackwell Science Ltd, Oxford, pp 10–19

    Google Scholar 

  • Boulton C, Quain D (2001) Brewing yeast and fermentation. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J (1999) The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 33:274–283

    Article  CAS  PubMed  Google Scholar 

  • Brányik T, Vicente AA, Dostálek P, Teixeira JA (2005) Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnol Prog 21:653–663

    Article  PubMed  CAS  Google Scholar 

  • Brosnan MP, Donnelly D, James TC, Bond U (2000) The stress response is repressed during fermentation in brewery strains of yeast. J Appl Microbiol 88:746–755

    Article  CAS  PubMed  Google Scholar 

  • Carrasco P, Querol A, del Olmo M (2001) Analysis of the stress resistance of commercial wine yeast strains. Arch Microbiol 175:450–457

    Article  CAS  PubMed  Google Scholar 

  • Casey GP, Magnus CA, Ingledew WM (1984) High-gravity brewing: effects on nutrition on yeast composition, fermentative ability and alcohol production. Appl Environ Microbiol 48:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  PubMed  Google Scholar 

  • David MH, Kirsop BH (1973) Yeast growth in relation to the dissolved oxygen and sterol content of wort. J Inst Brew 79:20–25

    Article  CAS  Google Scholar 

  • Dufour J-P, Malcorps P, Silcock P (2003) Control of ester synthesis during brewery fermentation. In: Smart KA (ed) Brewing yeast fermentation performance, 2nd edn. Blackwell Science, Oxford, pp 213–233

    Google Scholar 

  • Edelen CL, Miller JL, Patino H (1996) Effects of yeast pitch rates on fermentation performance and beer quality. Tech Q—Master Brew Assoc Am 33:30–32

    CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  PubMed  Google Scholar 

  • European Brewery Convention (1998) Analytica-EBC. Fachverlag Hans Carl, Nürnberg

    Google Scholar 

  • François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741

    Article  CAS  PubMed  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  PubMed  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  CAS  PubMed  Google Scholar 

  • Guldfeldt LU, Arneborg N (1998) The effect of yeast trehalose content at pitching on fermentation performance during brewery fermentations. J Inst Brew 104:37–39

    Article  CAS  Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeast for the 21st century. Progress to date. Yeast 11:1613–1627

    Article  CAS  PubMed  Google Scholar 

  • Hanneman W (2002) Reducing beer maturation time and retaining quality. Tech Q—Master Brew Assoc Am 39:149–155

    Google Scholar 

  • Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hounsa CE, Brandt VE, Thevelein J, Hohmann S, Prior AB (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    Article  CAS  PubMed  Google Scholar 

  • James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448

    Article  CAS  PubMed  Google Scholar 

  • Jenkins CI, Kennedy AI (2003) Impact of serial repitching on lager brewing yeast quality. J Am Soc Brew Chem 61:1–9

    CAS  Google Scholar 

  • Kara BV, Simpson WJ, Hammond JRM (1988) Prediction of the fermentation performance of brewing yeast with the acidification power test. J Inst Brew 94:153–158

    Article  Google Scholar 

  • Laws DRJ, McGuiness JD, Rennie H (1972) The losses of bitter substances during fermentation. J Inst Brew 78:314–321

    Article  CAS  Google Scholar 

  • Linko M, Haikara A, Ritala A, Penttilä M (1998) Recent advances in the malting and brewing industry. J Biotechnol 65:85–98

    Article  CAS  Google Scholar 

  • Majara N, O'Connor-Cox ESC, Axcell BC (1996) Trehalose—a stress protectant and stress indicator compound for yeast exposed to adverse conditions. J Am Soc Brew Chem 54:221–227

    CAS  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:2227–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moonjai N, Verstrepen KJ, Delvaux FR, Derdelinckx G, Verachtert H (2002) The effect of linoleic acid supplementation of cropped yeast on its subsequent fermentation performance and acetate esters. J Inst Brew 108:227–235

    Article  CAS  Google Scholar 

  • Neves MJ, Jorge JA, François JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neurospora crassa. FEBS Lett 283:19–22

    Article  CAS  PubMed  Google Scholar 

  • Nissen P, Nielsen D, Arneborg N (2003) Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell–cell contact-mediated mechanism. Yeast 20:331–341

    Article  CAS  PubMed  Google Scholar 

  • O'Connor-Cox ESC, Lodolo EJ, Axcell BC (1993) Role of oxygen in high-gravity fermentations in the absence of unsaturated lipid biosynthesis. J Am Soc Brew Chem 51:97–107

    CAS  Google Scholar 

  • Okabe M, Katoh M, Furugoori F, Yoshida M, Mitsui S (1992) Growth and fermentation characteristics of bottom brewer's yeast under mechanical stirring. J Ferment Bioeng 73:148–152

    Article  CAS  Google Scholar 

  • Powell CD, Van Zandycke SM, Quain D, Smart KA (2000) Replicative ageing and senescence in Saccharomyces cerevisiae and the impact in brewing fermentations. Microbiology 146:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Powell CD, Quain D, Smart KA (2003) The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res 3:149–157

    Article  CAS  PubMed  Google Scholar 

  • Quain DE, Tubb RS (1982) The importance of glycogen in brewing yeast. Tech Q—Master Brew Assoc Am 19:19–23

    Google Scholar 

  • Rautio JJ, Huuskonen A, Vuokko H, Vidgren V, Londesborough J (2007) Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast 24:741–760

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld E, Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20:1115–1144

    Article  CAS  PubMed  Google Scholar 

  • Sablayrolles JM (1995) Fermentation kinetics and the production of volatiles during alcoholic fermentation. J Am Soc Brew Chem 53:72–78

    CAS  Google Scholar 

  • Saerens SMG, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR (2008) Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol 80:1039–1051, doi:https://doi.org/10.1007/s00253-008-1645-5

    Article  CAS  PubMed  Google Scholar 

  • Sales K, Brandt W, Rumbak E, Lindsey G (2000) The LEA-like protein HSP12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. Biochim Biophys Acta, Biomembr 1463:267–278

    Article  CAS  Google Scholar 

  • Sasaki N, Yasuda Y, Imai T, Takeuchi T, Ohkochi M (2000) The effect of wort aeration using a high oxygen concentration. Tech Q—Master Brew Assoc Am 37:27–30

    CAS  Google Scholar 

  • Siderius M, Mager WH (2003) Conditional response to stress in yeast. Monatsh Chem 134:1433–1444

    Article  CAS  Google Scholar 

  • Smart KA (1999) Ageing in brewing yeast. Brew Guard 128:19–24

    Google Scholar 

  • Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 17:3556–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits HP, Hauf J, Müller S, Hobley TJ, Zimmermann FK, Hahn-Hägerdal B, Nielsen J, Olsson L (2000) Simultaneous overexpression of enzymes if the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Article  CAS  Google Scholar 

  • Suihko M-L, Vilpola A, Linko M (1993) Pitching rate in high gravity brewing. J Inst Brew 99:341–346

    Article  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP–protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918, doi:https://doi.org/10.1046/j.1365-2958.1999.01538.x

    Article  CAS  PubMed  Google Scholar 

  • \Verbelen PJ, Van Mulders S, Saison D, Van Laere S, Delvaux F, Delvaux FR (2008) Characteristics of high cell density fermentations with different lager yeast strains. J Inst Brew 114:127–133

    Article  Google Scholar 

  • Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends in Biotechnology 22:531–537

    Article  CAS  PubMed  Google Scholar 

  • Wainwright T (1973) Diacetyl—a review. J Inst Brew 79:451–470

    Article  CAS  Google Scholar 

  • Willaert R, Nedovic VA (2006) Primary beer fermentation by immobilised yeast—a review on flavour formation and control strategies. J Chem Technol Biotechnol 81:1353–1367

    Article  CAS  Google Scholar 

  • Winderickx J, De Winde JH, Crauwels M, Hino A, Hohmann S, Van Dijck P, Thevelein JM (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcriptional control? Mol Gen Genet 252:470–482

    CAS  PubMed  Google Scholar 

  • Zähringer H, Burgert M, Holzer H, Nwaka S (1997) Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett 412:615–620

    Article  PubMed  Google Scholar 

  • Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406, doi:https://doi.org/10.1046/j.1365-2958.2000.01706.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Laboratory of Molecular Cell Biology of Prof. Thevelein (Katholieke Universiteit Leuven, Heverlee, Belgium) for providing the Humicola trehalase. Financial support from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Verbelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbelen, P.J., Dekoninck, T.M.L., Saerens, S.M.G. et al. Impact of pitching rate on yeast fermentation performance and beer flavour. Appl Microbiol Biotechnol 82, 155–167 (2009). https://doi.org/10.1007/s00253-008-1779-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1779-5

Keywords

Navigation