Skip to main content
Log in

Archaeal alcohol dehydrogenase active at increased temperatures and in the presence of organic solvents

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The adhA gene of the extreme thermoacidophilic Archaeon Picrophilus torridus was identified by the means of genome analysis and was subsequently cloned in Escherichia coli. PTO 0846, encoding AdhA, consists of 954 bp corresponding to 317 aa. Sequence comparison revealed that the novel biocatalyst has a low sequence identity (<26%) to previously characterized enzymes. The recombinant alcohol dehydrogenase was purified using hydroxyapatite, and alcohol oxidative activity of the purified AdhA was measured over a wide pH and temperature range with maximal activity at 83°C and pH 7.8. Detailed analysis suggests that the active AdhA is a multimer, consisting of 12 identical subunits, with a molecular mass of 35 kDa each. AdhA represents the first dodecameric alcohol dehydrogenase characterized until to date. AdhA is able to oxidize primary and secondary alcohols with ethanol and 1-phenylalcohol as preferred substrates and NAD+ as preferred cofactor. In addition, isopropanol, which has been used successfully as cosubstrate in cofactor regeneration, is oxidized as well by AdhA. Besides being thermostable (t 1/2 = 42 min at 70°C), AdhA is also active in the presence of increased concentrations of urea (up to 5 M) and in the presence of organic solvents [up to 50% (v/v)] commonly used for organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A et al (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72(1):102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci U S A 87(14):5509–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ammendola S, Raia CA, Caruso C, Camardella L, D’Auria S et al (1992) Thermostable NAD(+)-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Biochemistry 31(49):12514–12523

    Article  CAS  PubMed  Google Scholar 

  • Antoine E, Rolland JL, Raffin JP, Dietrich J (1999) Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis. Characterization and comparison of the native and the recombinant enzymes. Eur J Biochem 264(3):880–889

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  CAS  PubMed  Google Scholar 

  • Berriman M, Rutherford K (2003) Viewing and annotating sequence data with Artemis. Brief Bioinform 4(2):124–132

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar L, Zeikus JG, Aubert JP (1986) Purification and characterization of glutamine synthetase from the archaebacterium Methanobacterium ivanovi. J Bacteriol 165(2):638–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw CW, Fu H, Shen GJ, Wong CH (1992) A Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J Org Chem 57(5):1526–1532

    Article  CAS  Google Scholar 

  • Branden CI, Eklund H, Nordstrom B, Boiwe T, Soderlund G et al (1973) Structure of liver alcohol dehydrogenase at 2.9-angstrom resolution. Proc Natl Acad Sci U S A 70(8):2439–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton HTS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1931:1456–1462

    Article  Google Scholar 

  • Burdette DS, Vieille C, Zeikus JG (1996) Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J 316(Pt 1):115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannio R, Fiorentino G, Carpinelli P, Rossi M, Bartolucci S (1996) Cloning and overexpression in Escherichia coli of the genes encoding NAD-dependent alcohol dehydrogenase from two Sulfolobus species. J Bacteriol 178(1):301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceci P, Ilari A, Falvo E, Giangiacomo L, Chiancone E (2005) Reassessment of protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps. J Biol Chem 280(41):34776–34785

    Article  CAS  PubMed  Google Scholar 

  • Chinnawirotpisan P, Matsushita K, Toyama H, Adachi O, Limtong S et al (2003) Purification and characterization of two NAD-dependent alcohol dehydrogenases (ADHs) induced in the quinoprotein ADH-deficient mutant of Acetobacter pasteurianus SKU1108. Biosci Biotechnol Biochem 67(5):958–965

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA (1992) Biotechnology of the Archaea. Trends Biotechnol 10(9):315–323

    Article  CAS  PubMed  Google Scholar 

  • Edegger K, Gruber CC, Poessl TM, Wallner SR, Lavandera I et al (2006) Biocatalytic deuterium- and hydrogen-transfer using over-expressed ADH-‘A’: enhanced stereoselectivity and 2H-labeled chiral alcohols. Chem Commun (Camb) 22:2402–2404

    Article  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8(6):649–655

    Article  CAS  PubMed  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C et al (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A 101(24):9091–9096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano A, Febbraio F, Russo C, Rossi M, Raia CA (2005) Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant. Biochem J 388(Pt 2):657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GOLD (2006) The Genomes On Line Database. Available at http://www.genomesonline.org. Accessed on October 11th 2006. (October 11)

  • Guy JE, Isupov MN, Littlechild JA (2003) The structure of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. J Mol Biol 331(5):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Holt PJ, Williams RE, Jordan KN, Lowe CR, Bruce NC (2000) Cloning, sequencing and expression in Escherichia coli of the primary alcohol dehydrogenase gene from Thermoanaerobacter ethanolicus JW200. FEMS Microbiol Lett 190(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Kataoka M, Ono H, Sakamoto K, Kita S et al (2002) Purification and characterization of a novel esterase promising for the production of useful compounds from Microbacterium sp. 7–1W. FEMS Microbiol Lett 206(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Ismaiel AA, Zhu CX, Colby GD, Chen JS (1993) Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175(16):5097–5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang J (2002) Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 269(9):2394–2402

    Article  CAS  PubMed  Google Scholar 

  • Iwase M, Kurata N, Ehana R, Nishimura Y, Masamoto T et al (2006) Evaluation of the effects of hydrophilic organic solvents on CYP3A-mediated drug-drug interaction in vitro. Hum Exp Toxicol 25(12):715–721

    Article  CAS  PubMed  Google Scholar 

  • Kallberg Y, Persson B (2006) Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden Markov model-based method and its application on complete genomes. FEBS J 273(6):1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Keinan E, Hafeli EK, Seth KK, Lamed R (1986) Thermostable enzymes in organic synthesis 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J Am Chem Soc 108(1):162–169

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246

    Article  CAS  PubMed  Google Scholar 

  • Kohlhoff M, Dahm A, Hensel R (1996) Tetrameric triosephosphate isomerase from hyperthermophilic Archaea. FEBS Lett 383(3):245–250

    Article  CAS  PubMed  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8(2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Kube J, Brokamp C, Machielsen R, van der Oost J, Markl H (2006) Influence of temperature on the production of an archaeal thermoactive alcohol dehydrogenase from Pyrococcus furiosus with recombinant Escherichia coli. Extremophiles 10(3):221–227

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A et al (2005) Enzyme genomics: application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29(2):263–279

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lamed R, Zeikus JG (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144(2):569–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed RJ, Zeikus JG (1981) Novel NADP-linked alcohol–aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J 195(1):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5(6):775–783

    Article  CAS  PubMed  Google Scholar 

  • Li D, Stevenson KJ (1997) Purification and sequence analysis of a novel NADP(H)-dependent type III alcohol dehydrogenase from Thermococcus strain AN1. J Bacteriol 179(13):4433–4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littlechild JA, Guy JE, Isupov MN (2004) Hyperthermophilic dehydrogenase enzymes. Biochem Soc Trans 32(Pt 2):255–258

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Adams MW (1999) An unusual oxygen-sensitive, iron- and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 181(4):1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machielsen R, Uria AR, Kengen SW, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72(1):233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opitz U, Rudolph R, Jaenicke R, Ericsson L, Neurath H (1987) Proteolytic dimers of porcine muscle lactate dehydrogenase: characterization, folding, and reconstitution of the truncated and nicked polypeptide chain. Biochemistry 26(5):1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Peretz M, Burstein Y (1989) Amino acid sequence of alcohol dehydrogenase from the thermophilic bacterium Thermoanaerobium brockii. Biochemistry 28(16):6549–6555

    Article  CAS  PubMed  Google Scholar 

  • Persson B, Kallberg Y, Oppermann U, Jornvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143–144:271–278

    Article  CAS  PubMed  Google Scholar 

  • Radianingtyas H, Wright PC (2003) Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27(5):593–616

    Article  CAS  PubMed  Google Scholar 

  • Rella R, Raia CA, Pensa M, Pisani FM, Gambacorta A et al (1987) A novel archaebacterial NAD+ -dependent alcohol dehydrogenase. Purification and properties. Eur J Biochem 167(3):475–479

    Article  CAS  PubMed  Google Scholar 

  • Ribas De Pouplana L, Atrian S, Gonzalex-Duarte R, Fothergill-Gilmore LA, Kelly SM et al (1991) Structural properties of long- and short-chain alcohol dehydrogenases. Contribution of NAD+ to stability. Biochem J 276(Pt 2):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossmann MG, Argos P (1981) Protein folding. Annu Rev Biochem 50:497–532

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secundo F, Russo C, Giordano A, Carrea G, Rossi M et al (2005) Temperature-induced conformational change at the catalytic site of Sulfolobus solfataricus alcohol dehydrogenase highlighted by Asn249Tyr substitution. A hydrogen/deuterium exchange, kinetic, and fluorescence quenching study. Biochemistry 44(33):11040–11048

    Article  CAS  PubMed  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81(1–4):73–83

    Article  CAS  PubMed  Google Scholar 

  • Stampfer W, Kosjek B, Kroutil W, Faber K (2003) On the organic solvent and thermostability of the biocatalytic redox system of Rhodococcus ruber DSM 44541. Biotechnol Bioeng 81(7):865–869

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Sakai Y, Ishige T, Kato N (2000) Thermostable NADP(+)-dependent medium-chain alcohol dehydrogenase from Acinetobacter sp strain M-1: purification and characterization and gene expression in Escherichia coli. Appl Environ Microbiol 66(12):5231–5235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur J Biochem 254(2):356–362

    Article  CAS  PubMed  Google Scholar 

  • Villeret V, Clantin B, Tricot C, Legrain C, Roovers M et al (1998) The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proc Natl Acad Sci U S A 95(6):2801–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierenga RK, De Maeyer MCH, Hol WGJ (1985) Interaction of pyrophosphate moieties with α-helixes in dinucleotide-binding proteins. Biochemistry 24(6):1364–1376

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grant 04-008 202131 from the German BMBF. We would like to thank Moritz Katzer for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garabed Antranikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, M., Antranikian, G. Archaeal alcohol dehydrogenase active at increased temperatures and in the presence of organic solvents. Appl Microbiol Biotechnol 77, 1003–1013 (2008). https://doi.org/10.1007/s00253-007-1238-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1238-8

Keywords

Navigation