Skip to main content
Log in

Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrate species that have diversified across virtually all fresh and saltwater ecosystems. This ecological breadth raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the substrate for rapid genomic evolution and innovation. However, studies of putative teleost-specific innate immune receptors have been largely limited to comparisons either among teleosts or between teleosts and distantly related vertebrate clades such as tetrapods. Here we describe and characterize the receptor diversity of two clustered innate immune gene families in the teleost sister lineage: Holostei (bowfin and gars). Using genomic and transcriptomic data, we provide a detailed investigation of the phylogenetic history and conserved synteny of gene clusters encoding diverse immunoglobulin domain-containing proteins (DICPs) and novel immune-type receptors (NITRs). These data demonstrate an ancient linkage of DICPs to the major histocompatibility complex (MHC) and reveal an evolutionary origin of NITR variable-joining (VJ) exons that predate the TGD by at least 50 million years. Further characterizing the receptor diversity of Holostean DICPs and NITRs illuminates a sequence diversity that rivals the diversity of these innate immune receptor families in many teleosts. Taken together, our findings provide important historical context for the evolution of these gene families that challenge prevailing expectations concerning the consequences of the TGD during actinopterygiian evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data used in this study are publicly available on NCBI, Ensembl, or the PhyloFish database (http://phylofish.sigenae.org/). Publicly available bowfin sequences accessed during this study are also provided as full length fasta formatted sequences and partitioned sequences linked to the delimitations of domains (e.g., NITR-I, NITR-V) in the Supplementary Materials.

References

  • Abi Rached L, McDermott MF, Pontarotti P (1999) The MHC big bang. Immunol Rev 167:33–44

    Article  CAS  PubMed  Google Scholar 

  • Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A 106:13410–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Hikima J-I, Hwang SD, Jung TS (2013) Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol 35:1689–1702

    Article  CAS  PubMed  Google Scholar 

  • Berv JS, Field DJ (2018) Genomic signature of an avian Lilliput effect across the K-Pg Extinction. Syst Biol 67:1–13

    Article  PubMed  Google Scholar 

  • Betancur-R R, Wiley EO, Arratia G et al (2017) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudinot P, Zou J, Ota T et al (2014) A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths. J Exp Zool B Mol Dev Evol 322:415–437

    Article  CAS  PubMed  Google Scholar 

  • Braasch I, Gehrke AR, Smith JJ et al (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braasch I, Postlethwait JH (2012) Polyploidy in fish and the teleost genome duplication. In: Soltis P, Soltis D (eds) Polyploidy and genome evolution. Springer, Berlin, Heidelberg, pp 341–383

    Chapter  Google Scholar 

  • Brawand D, Wagner CE, Li YI et al (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns MD, Sidlauskas BL (2019) Ancient and contingent body shape diversification in a hyperdiverse continental fish radiation. Evolution 73:569–587

    Article  PubMed  Google Scholar 

  • Cannon JP, Haire RN, Magis AT, Eason DD, Winfrey KN, Hernandez Prada JA, Bailey KM, Jakoncic J, Litman GW, Ostrov DA (2008) A bony fish immunological receptor of the NITR multigene family mediates allogeneic recognition. Immunity 29(2):228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona SJ, Teichmann SA, Ferreira L et al (2017) Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types. Genome Res 27:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conant GC (2020) The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 15:e0231356

  • Daane JM, Dornburg A, Smits P et al (2019) Historical contingency shapes adaptive radiation in Antarctic fishes. Nat Ecol Evol 3:1102–1109

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis AM, Unmack PJ, Pusey BJ et al (2012) Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae). J Evol Biol 25:1163–1179

    Article  CAS  PubMed  Google Scholar 

  • Davis MP, Holcroft NI, Wiley EO et al (2014) Species-specific bioluminescence facilitates speciation in the deep sea. Mar Biol 161:1139–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai S, Heffelfinger AK, Orcutt TM et al (2008) The medaka novel immune-type receptor (NITR) gene clusters reveal an extraordinary degree of divergence in variable domains. BMC Evol Biol 8:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dirscherl H, McConnell SC, Yoder JA, de Jong JLO (2014) The MHC class I genes of zebrafish. Dev Comp Immunol 46:11–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dornburg A, Federman S, Lamb AD et al (2017) Cradles and museums of Antarctic teleost biodiversity. Nat Ecol Evol 1:1379–1384

    Article  PubMed  Google Scholar 

  • Dornburg A, Sidlauskas B, Santini F et al (2011) The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae). Evolution 65:1912–1926

    Article  PubMed  Google Scholar 

  • Dornburg A, Townsend JP, Friedman M, Near TJ (2014) Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol Biol 14:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabbri M, Mongiardino Koch N, Pritchard AC et al (2017) The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat Ecol Evol 1:1543–1550

    Article  PubMed  Google Scholar 

  • Fernández R, Gabaldón T (2020) Gene gain and loss across the metazoan tree of life. Nat Ecol Evol 4:524–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferraresso S, Kuhl H, Milan M et al (2009) Identification and characterisation of a novel immune-type receptor (NITR) gene cluster in the European sea bass, Dicentrarchus labrax, reveals recurrent gene expansion and diversification by positive selection. Immunogenetics 61:773–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman M, Keck BP, Dornburg A et al (2013) Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc Biol Sci 280:20131733

    PubMed  PubMed Central  Google Scholar 

  • Friedman ST, Martinez CM, Price SA, Wainwright PC (2019) The influence of size on body shape diversification across Indo-Pacific shore fishes*. Evolution 73:1873–1884

    Article  PubMed  Google Scholar 

  • Gajdzik L, Aguilar-Medrano R, Frédérich B (2019) Diversification and functional evolution of reef fish feeding guilds. Ecol Lett 22:572–582

    Article  PubMed  Google Scholar 

  • Gao F-X, Lu W-J, Wang Y et al (2018) Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp. Dev Comp Immunol 84:396–407

    Article  CAS  PubMed  Google Scholar 

  • Glasauer SMK, Neuhauss SCF (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 289:1045–1060

    Article  CAS  PubMed  Google Scholar 

  • Grande L (2010) An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy: the resurrection of Holostei. Copeia 2010(2A):iii–871

    Google Scholar 

  • Haire RN, Cannon JP, O’Driscoll ML et al (2012) Genomic and functional characterization of the diverse immunoglobulin domain-containing protein (DICP) family. Genomics 99:282–291

    Article  CAS  PubMed  Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A et al (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  PubMed  Google Scholar 

  • Höhne C, Prokopov D, Kuhl H, Du K, Klopp C, Wuertz S, Trifonov V, Stöck M (2021) The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome-scale sturgeon genome. Rev Aquac 13(3):1709–1729

    Article  Google Scholar 

  • Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes LC, Ortí G, Huang Y et al (2018) Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc Natl Acad Sci U S A 115:6249–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias TL, Dornburg A, Warren DL et al (2018) Eyes wide shut: the impact of dim-light vision on neural investment in marine teleosts. J Evol Biol 31:1082–1092

    Article  PubMed  Google Scholar 

  • Inoue J, Sato Y, Sinclair R et al (2015) Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci U S A 112:14918–14923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapustin Y, Souvorov A, Tatusova T, Lipman D (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct 3:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasahara M (1999) The chromosomal duplication model of the major histocompatibility complex. Immunol Rev 167:17–32

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Flajnik MF (2019) Origin and evolution of the specialized forms of proteasomes involved in antigen presentation. Immunogenetics 71:251–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2014) MAFFT: iterative refinement and additional methods. Methods Mol Biol 1079:131–146

    Article  PubMed  Google Scholar 

  • Langevin C, Aleksejeva E, Passoni G et al (2013) The antiviral innate immune response in fish: evolution and conservation of the IFN system. J Mol Biol 425:4904–4920

    Article  CAS  PubMed  Google Scholar 

  • Lefranc M-P, Giudicelli V, Duroux P et al (2015) IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res 43:D413–D422

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Hawke NA, Yoder JA (2001) Novel immune-type receptor genes. Immunol Rev 181:250–259

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Yoder JA, Cannon JP, Haire RN (2003) Novel immune-type receptor genes and the origins of adaptive and innate immune recognition. Integr Comp Biol 43:331–337

    Article  CAS  PubMed  Google Scholar 

  • Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery BC, Cortes HD, Mewes-Ares J et al (2011) Teleost IgSF immunoregulatory receptors. Dev Comp Immunol 35:1223–1237

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34:2490–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani M, Miya M, Mabuchi K et al (2011) Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Dornburg A, Eytan RI et al (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci U S A 110:12738–12743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL et al (2012a) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci U S A 109:3434–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Eytan RI, Dornburg A et al (2012b) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci U S A 109:13698–13703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Kim D (2021) Phylogeny and time scale of diversification in the fossil-rich sunfishes and black basses (Teleostei: Percomorpha: Centrarchidae). Mol Phylogenet Evol 161:107156

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt SJ (2003) Arizonasaurus and its implications for archosaur divergence. Proc Biol Sci 270(Suppl 2):S234–S237

    PubMed  PubMed Central  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  • Pasquier J, Cabau C, Nguyen T et al (2016) Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 17:368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietretti D, Wiegertjes GF (2014) Ligand specificities of Toll-like receptors in fish: indications from infection studies. Dev Comp Immunol 43:205–222

    Article  CAS  PubMed  Google Scholar 

  • Price SA, Schmitz L, Oufiero CE et al (2014) Two waves of colonization straddling the K-Pg boundary formed the modern reef fish fauna. Proc Biol Sci 281:20140321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prum RO, Berv JS, Dornburg A et al (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573

    Article  CAS  PubMed  Google Scholar 

  • Quang LS, Gascuel O, Lartillot N (2008) Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24:2317–2323

    Article  CAS  Google Scholar 

  • Rebl A, Goldammer T, Seyfert H-M (2010) Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol 134:139–150

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Nunez I, Wcisel DJ, Litman GW, Yoder JA (2014) Multigene families of immunoglobulin domain-containing innate immune receptors in zebrafish: deciphering the differences. Dev Comp Immunol 46:24–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Nunez I, Wcisel DJ, Litman RT et al (2016) The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes. Immunogenetics 68:295–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzburger W (2018) Understanding explosive diversification through cichlid fish genomics. Nat Rev Genet 19:705–717

    Article  CAS  PubMed  Google Scholar 

  • Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proceedings of the Royal Society B: Biological Sciences 273:1987–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah RN, Rodriguez-Nunez I, Eason DD et al (2012) Development and characterization of anti-nitr9 antibodies. Adv Hematol 2012:596925

  • Sibert E, Friedman M, Hull P et al (2018) Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous-Palaeogene mass extinction. Proceedings of the Royal Society B: Biological Sciences 285:20181194

    Article  PubMed  PubMed Central  Google Scholar 

  • Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145

    Article  CAS  PubMed  Google Scholar 

  • Siqueira AC, Bellwood DR, Cowman PF (2019) Historical biogeography of herbivorous coral reef fishes: the formation of an Atlantic fauna. J Biogeo

  • Smithwick FM, Stubbs TL (2018) Phanerozoic survivors: Actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events. Evolution 72:348–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Soubrier J, Steel M, Lee MSY et al (2012) The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol Biol Evol 29:3345–3358

    Article  CAS  PubMed  Google Scholar 

  • Strong SJ, Mueller MG, Litman RT et al (1999) A novel multigene family encodes diversified variable regions. Proc Natl Acad Sci U S A 96:15080–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takezaki N (2018) Global rate variation in bony vertebrates. Genome Biol Evol 10:1803–1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson AW, Hawkins MB, Parey E et al (2021) The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat Genet. https://doi.org/10.1038/s41588-021-00914-y

  • Traver D, Yoder JA (2020) Chapter 19—Immunology. In: Cartner SC, Eisen JS, Farmer SC, et al. (eds) The zebrafish in biomedical research. Acad Press, pp 191–216

  • Tukwasibwe S, Nakimuli A, Traherne J et al (2020) Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell Mol Immunol 17:799–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrberg M, Parham P, Wernet P (2002) Definition of gene content for nine common group B haplotypes of the Caucasoid population: KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics 54:221–229

    Article  CAS  PubMed  Google Scholar 

  • Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang H, Debarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

  • Wcisel DJ, Howard JT 3rd, Yoder JA, Dornburg A (2020) Transcriptome Ortholog Alignment Sequence Tools (TOAST) for phylogenomic dataset assembly. BMC Evol Biol 20:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wcisel DJ, Ota T, Litman GW, Yoder JA (2017) Spotted gar and the evolution of innate immune receptors. J Exp Zool B Mol Dev Evol 328(7):666–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Wcisel DJ, Yoder JA (2016) The confounding complexity of innate immune receptors within and between teleost species. Fish Shellfish Immunol 53:24–34

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Zhou J-M, Chen X et al (2007) The zebrafish activating immune receptor Nitr9 signals via Dap12. Immunogenetics 59:813–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2011) ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3:180–185

    Article  Google Scholar 

  • Williams AF, Barclay AN (1988) The immunoglobulin superfamily—domains for cell surface recognition. Annu Rev Immunol 6:381–405

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Dijkstra JM (2019) Major histocompatibility complex (MHC) genes and disease resistance in fish. Cells 8:378. https://doi.org/10.3390/cells8040378

  • Yamanoue Y, Miya M, Doi H et al (2011) Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae): a mitogenomic perspective. PLoS One 6:e17410

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA (2009) Form, function and phylogenetics of NITRs in bony fish. Dev Comp Immunol 33:135–144

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Cannon JP, Litman RT et al (2008) Evidence for a transposition event in a second NITR gene cluster in zebrafish. Immunogenetics 60:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Litman GW (2011) The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63:123–141

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Litman RT, Mueller MG et al (2004) Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc Natl Acad Sci USA 101:15706–15711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Turner PM, Wright PD et al (2010) Developmental and tissue-specific expression of NITRs. Immunogenetics 62:117–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Thomas Near (Yale University) for helpful discussions about bowfin biology and the consequences of the teleost genome duplication and Madhusudhan Gundappa (@fish_lines) for illustrations of bowfin and spotted gar.

Funding

This research was supported, in part, by grants from the National Science Foundation (IOS-1755242 to AD and IOS-1755330 to JAY), a grant from the Triangle Center for Evolutionary Medicine (TriCEM) to AD and JAY, and funding from the National Institutes of Health (R01OD011116 to IB).

Author information

Authors and Affiliations

Authors

Contributions

AD and JAY conceived of and designed the study. EF, KZ, AWT, IB, LRA, TO, DJW, and AWT assembled sequence data. AD, JAY, TO, EF, LRA, KZ, AWT, IB, and DJW analyzed the data. AD and JAY wrote the first draft of the manuscript. All authors contributed to the writing of the final manuscript.

Corresponding authors

Correspondence to Alex Dornburg or Jeffrey A. Yoder.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Disclaimer

The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dornburg, A., Wcisel, D.J., Zapfe, K. et al. Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics 73, 479–497 (2021). https://doi.org/10.1007/s00251-021-01225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-021-01225-6

Keywords

Navigation