Skip to main content

Advertisement

Log in

Computational identification and characterization of antigenic properties of Rv3899c of Mycobacterium tuberculosis and its interaction with human leukocyte antigen (HLA)

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

A rise in drug-resistant tuberculosis (TB) cases demands continued efforts towards the discovery and development of drugs and vaccines. Secretory proteins of Mycobacterium tuberculosis (H37Rv) are frequently studied for their antigenicity and their scope as protein subunit vaccines requires further analysis. In this study, Rv3899c of H37Rv emerges as a potential vaccine candidate on its evaluation by several bioinformatics tools. It is a non-toxic, secretory protein with an ‘immunoglobulin-like’ fold which does not show similarity with a human protein. Through BlastP and MEME suite analysis, we found Rv3899c homologs in several mycobacterial species and its antigenic score (0.54) to compare well with the known immunogens such as ESAT-6 (0.56) and Rv1860 (0.52). Structural examination of Rv3899c predicted ten antigenic peptides, an accessibility profile of the antigenic determinants constituting B cell epitope-rich regions and a low abundance of antigenic regions (AAR) value. Significantly, STRING analysis showed ESX-2 secretion system proteins and antigenic PE/PPE proteins of H37Rv as the interacting partners of Rv3899c. Further, molecular docking predicted Rv3899c to interact with human leukocyte antigen HLA-DRB1*04:01 through its antigenically conserved motif (RAAEQQRLQRIVDAVARQEPRISWAAGLRDDGTT). Interestingly, the binding affinity was observed to increase on citrullination of its Arg1 residue. Taken together, the computational characterization and predictive information suggest Rv3899c to be a promising TB vaccine candidate, which should be validated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data available within the article or its supplementary materials.

References

  • Ahmad T, Marshall SE, Jewell D (2006) Genetics of inflammatory bowel disease: the role of the HLA complex. World J Gastroenterol: WJG 12(23):3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahsan MJ (2015) Recent advances in the development of vaccines for tuberculosis. Therapeutic Advances in Vaccines 3(3):66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Annabel B, Anna D, Hannah MD (2019). Global tuberculosis report.

  • Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, Nielsen H (2019a) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotech 37(4):420–423

  • Armenteros JJA, Salvatore M, Emanuelsson O, Winther O, Von Heijne G, Elofsson A, Nielsen H (2019b) Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2(5)

  • Babaki MKZ, Soleimanpour S, Rezaee SA (2017) Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb Pathog 112:20–29

    Article  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers

  • Bendtsen JD, Kiemer L, Fausbøll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhasin M, Garg A, Raghava GPS (2005) PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 21(10):2522–2524

    Article  CAS  PubMed  Google Scholar 

  • Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Holm L, Sander C (1994) The immunoglobulin fold. J Mol Biol 242(4):309–320

    CAS  PubMed  Google Scholar 

  • Boshoff HI, Barry CE (2005) Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Bosserman RE, Champion PA (2017) Esx systems and the mycobacterial cell envelope: what’s the connection? J Bacteriol 199(17):e00131-e217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornejo-Granados F, Zatarain-Barrón ZL, Cantu-Robles VA, Mendoza-Vargas A, Molina-Romero C, Sánchez F, Ochoa-Leyva A (2017). Secretome prediction of two M. tuberculosis clinical isolates reveals their high antigenic density and potential drug targets. Front Microbiol 8:128

  • D’Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB (2015) New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Research 1(1):00010–02015

    PubMed  PubMed Central  Google Scholar 

  • Das AA, Sharma OP, Kumar MS, Krishna R, Mathur PP (2013) PepBind: a comprehensive database and computational tool for analysis of protein–peptide interactions. Genomics Proteomics Bioinformatics 11(4):241–246

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) PyMOL

  • Deng J, Bi L, Zhou L, Guo SJ, Fleming J, Jiang HW, Zhang XE (2014) Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep 9(6):2317–2329

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Claverie JM (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(suppl_2):W465-W469

  • Diel R, Loddenkemper R, Zellweger JP, Sotgiu G, D’Ambrosio L, Centis R, Reichman L (2013) Old ideas to innovate tuberculosis control: preventive treatment to achieve elimination. Eur Respir J 42(3):785–801

    Article  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fishman JM, Wiles K, Wood KJ (2015) The acquired immune system response to biomaterials, including both naturally occurring and synthetic biomaterials. In Host Response to Biomaterials (pp. 151–187). Academic Press

  • Flower DR, Macdonald IK, Ramakrishnan K, Davies MN, Doytchinova IA (2010) Computer aided selection of candidate vaccine antigens. Immun Res 6(2):S1

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Humana press

  • Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez S, Adalid-Peralta L, Palafox-Fonseca H, Cantu-Robles VA, Soberon X, Sciutto E, Ochoa-Leyva A (2015) Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR). Sci Rep 5:9683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawn TR, Day TA, Scriba TJ, Hatherill M, Hanekom WA, Evans TG, Self SG (2014) Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev 78(4):650–671

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, Cairns E (2003) Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1* 0401 MHC class II molecule. J Immunol 171(2):538–541

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PS, Seyer JH, Butler CA (1992) Molecular characterization of the 28-and 31-kilodalton subunits of the Legionella pneumophila major outer membrane protein. J Bacteriol 174(3):908–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24-W29

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30(1):42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Leung-Theung-Long S, Coupet CA, Gouanvic M, Schmitt D, Ray A, Hoffmann C, Arias L (2018) A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis. PLoS One 13(5):e0196815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Gao Y, Li D, Fleming J, Li H, Bi L (2016) Crystal structure of Rv3899c184–410, a hypothetical protein from Mycobacterium tuberculosis. Acta Crystallographica Section F: Struc Biol Commun 72(8):642–645

    CAS  Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjelievskaia J, Erck D, Piracha S, Schrager L (2016) Drug-resistant TB: deadly, costly and in need of a vaccine. Trans R Soc Trop Med Hyg 110(3):186–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin C (2005) The dream of a vaccine against tuberculosis; new vaccines improving or replacing BCG? Eur Respir J 26(1):162–167

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Gwadz M (2010) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39(suppl_1):D225-D229

  • Palomino JC, Martin A (2014) Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics 3(3):317–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanović SSYFPEITHI (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  CAS  PubMed  Google Scholar 

  • Payne RO, Silk SE, Elias SC, Milne KH, Rawlinson TA, Llewellyn D, Poulton ID (2017) Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI insight, 2(12)

  • Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res, 32(suppl_2):W321-W326

  • Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In International Conference on Artificial Immune Systems (pp. 197–204). Springer, Berlin, Heidelberg

  • Saha S, Raghava GP (2007) BTXpred: prediction of bacterial toxins. In silico biology 7(4, 5):405–412

  • Satchidanandam V, Kumar N, Biswas S, Jumani RS, Jain C, Rani R, Sridharan A (2016) The secreted protein Rv1860 of Mycobacterium tuberculosis stimulates human polyfunctional CD8+ T-cells. Clin Vaccine Immunol 23(4):282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayes F, Pawlik A, Frigui W, Gröschel MI, Crommelynck S, Fayolle C, Brosch R (2016) CD4+ T-cells recognizing PE/PPE antigens directly or via cross reactivity are protective against pulmonary Mycobacterium tuberculosis infection. PLoS Pathog 12(7):e1005770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(suppl_2):W363-W367

  • Shen HB, Chou KC (2009) Predicting protein fold patterns with functional domain and sequential evolution information. J Theor Biol 256(3):441–446

    Article  CAS  PubMed  Google Scholar 

  • Shtatland T, Guettler D, Kossodo M, Pivovarov M, Weissleder R (2007) PepBank-a database of peptides based on sequence text mining and public peptide data sources. BMC Bioinformatics 8(1):1–10

    Article  CAS  Google Scholar 

  • Song Y, Liu J, Li DF, Li H, Wang S, Wang DC, Bi L (2015) Purification, crystallization and preliminary X-ray crystallographic studies of Rv3899c from Mycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications 71(1):107–109

    CAS  PubMed Central  Google Scholar 

  • Souza de Lima D, MorishiOgusku M, Porto dos Santos M, de Melo Silva CM, Alves de Almeida V, Assumpção Antunes I, Sadahiro A (2016) Alleles of HLA-DRB1* 04 associated with pulmonary tuberculosis in Amazon Brazilian population. PLoS One 11(2):e0147543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Kuhn M (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajković V (2004) The role of mycobacterial secretory proteins in immune response in tuberculosis. Medicinskipregled 57:25–28

    Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850

    Article  CAS  PubMed  Google Scholar 

  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47(D1):D339–D343

    Article  CAS  PubMed  Google Scholar 

  • Vordermeier HM, Hewinson RG, Wilkinson RJ, Wilkinson KA, Gideon HP, Young DB, Sampson SL (2012) Conserved immune recognition hierarchy of mycobacterial PE/PPE proteins during infection in natural hosts. PLoS One 7(8):e40890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnecke A, Sandalova T, Achour A, Harris RA (2014) PyTMs: a useful PyMOL plugin for modeling common post-translational modifications. BMC Bioinformatics 15(1):1–12

    Article  CAS  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Lepore R (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. (2019). Global tuberculosis report 2019. World Health Organization

  • Yan YH, Li MC, Liu HC, Xiao TY, Li N, Lou YL, Wan KL (2020) Cellular immunity evaluation of five mycobacterium tuberculosis recombinant proteins and their compositions. Zhonghuayu Fang Yixuezazhi [chinese Journal of Preventive Medicine] 54(5):539

    CAS  Google Scholar 

  • Yang Z, Zeng X, Tsui SKW (2019) Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics 20(1):394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Principal, Acharya Narendra Dev College, University of Delhi, for the infrastructural support and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmi Bajpai.

Ethics declarations

Competing interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Eniyan, K. & Bajpai, U. Computational identification and characterization of antigenic properties of Rv3899c of Mycobacterium tuberculosis and its interaction with human leukocyte antigen (HLA). Immunogenetics 73, 357–368 (2021). https://doi.org/10.1007/s00251-021-01220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-021-01220-x

Keywords

Navigation