Skip to main content

Advertisement

Log in

In silico analysis reveals interrelation of enriched pathways and genes in type 1 diabetes

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is a multifactorial, polygenic complex autoimmune disease damaging pancreatic islet β cells. Numerous genes linked to T1D have been discovered through genetical studies, GWAS and polymorphisms. Most genetical studies focused on independent genes while others overemphasized on SNPs. Here, a collective analysis of documented T1D-associated genes was performed using bioinformatics tools. Enriched biological pathways, functions, enrichment clustering, networks and interactomes were analysed. Besides, meta-analyses of T1D-associated genes and T1D-related genes from SNPs were investigated to find common genes, pathways, enrichment and interrelationships. Notable enriched pathways comprised of cytokine-mediated signalling, cytokine production, interferon gamma production, myeloid leukocyte activation, activation of immune response, lymphocyte activation, adaptive immune response, Th17 cell differentiation etc. Enrichment analysis of T1D-associated genes emphasized the role of immune-linked machineries in metabolism, disease progression and aetiology of type 1 diabetes. Interactome analysis revealed overrepresentation of T1D-associated genes compared with T1D-related genes from SNPs. MCODE components highlighted the significance of pathways linked to vitamin D metabolism, signalling by interleukins, toll-like receptors, chemokines, PD-1, NOTCH, antigen processes etc. About 153 genes from MCODE complexes representing enriched pathways of T1D-associated genes and T1D-related genes from SNPs play a crucial role and may be important for further investigations. The information may be valuable for designing precision medicine–based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Available on request

References

  • Andrews AL, Holloway JW, Holgate ST, Davies DE (2006) IL-4 receptor α is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J Immunol 176:7456–7461

    CAS  PubMed  Google Scholar 

  • Arasanz H, Gato-Cañas M, Zuazo M, Ibañez-Vea M, Breckpot K, Kochan G, Escors D (2017) PD1 signal transduction pathways in T cells. Oncotarget 8:51936–51945

    PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M (1999) Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 100:1494–1498

    CAS  PubMed  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2

    Google Scholar 

  • Bahram S, Arnold D, Bresnahan M, Strominger JL, Spies T (1991) Two putative subunits of a peptide pump encoded in the human major histocompatibility complex class II region. Proc Natl Acad Sci U S A 88:10094–10098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreiro O, Yanez-Mo M et al (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basler M, Kirk CJ, Groettrup M (2013) The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol 25:74–80

    CAS  PubMed  Google Scholar 

  • Bergholdt R, Brorsson C, Palleja A, Berchtold LA, Floyel T, Bang-Berthelsen CH, Frederiksen KS, Jensen LJ, Storling J, Pociot F (2012) Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes 61:954–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boros LG, Lee WN, Go VL (2002) A metabolic hypothesis of cell growth and death in pancreatic cancer. Pancreas 24:26–33

    PubMed  Google Scholar 

  • Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE, Mentch FD, Qiu H, Glessner JT, Thomas KA, Frackelton EC, Chiavacci RM, Imielinski M, Monos DS, Pandey R, Bakay M, Grant SFA, Polychronakos C, Hakonarson H (2011) A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7:e1002293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braud VM, Allan DS et al (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–799

    CAS  PubMed  Google Scholar 

  • Burwinkel B, Bakker HD, Herschkovitz E, Moses SW, Shin YS, Kilimann MW (1998) Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am J Hum Genet 62:785–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatr-Aryamontri A, Oughtred R, Boucher L et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45:D369–D379

    CAS  PubMed  Google Scholar 

  • Christoffersson G (2013) Leukocytes in angiogenesis. Dissertation, Uppsala Universitet

  • Concannon P, Erlich HA, Julier C, Morahan G, Nerup J, Pociot F, Todd JA, Rich SS, the Type 1 Diabetes Genetics Consortium (2005) Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families. Diabetes 54:2995–3001

    CAS  PubMed  Google Scholar 

  • Cordell HJ, Todd JA (1995) Multifactorial inheritance in type 1 diabetes. Trends Genet 11:499–504

    CAS  PubMed  Google Scholar 

  • de Hostos EL (1999) The coronin family of actin-associated proteins. Trends Cell Biol 9:345–350

    PubMed  Google Scholar 

  • Dong JY, Zhang W, Chen JJ, Zhang ZL, Han SF, Qin LQ (2013) Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients 5:3551–3562

    PubMed  PubMed Central  Google Scholar 

  • Dos Santos RS, Marroqui L, Velayos T, Olazagoitia-Garmendia A, Jauregi-Miguel A, Castellanos-Rubio A, Eizirik DL, Castaño L, Santin I (2019) DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway. Diabetologia 62:459–472

    PubMed  Google Scholar 

  • Duarte GCK, Assmann TS, Dieter C, de Souza BM, Crispim D (2017) GLIS3 rs7020673 and rs10758593 polymorphisms interact in the susceptibility for type 1 diabetes mellitus. Acta Diabetol 54:813–821

    CAS  PubMed  Google Scholar 

  • Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J (2015) The role of cytokines in breast cancer development and progression. J Interf Cytokine Res 35:1–16

    Google Scholar 

  • Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The Reactome Pathway Knowledgebase. Nucleic Acids Res 46:D649–D655

    CAS  PubMed  Google Scholar 

  • Gall D, Baus E, Dupont G (2000) Activation of the liver glycogen phosphorylase by Ca (2+) oscillations: a theoretical study. J Theor Biol 207:445–454

    CAS  PubMed  Google Scholar 

  • Giarratana N, Penna G, Amuchastegui S, Mariani R, Adorini L (2006) Leukocyte migration to pancreatic islets: a critical step in the pathogenesis of type 1 diabetes. In: Badolato R, Sozzani S (eds) Lymphocyte trafficking in health and disease. Progress in Inflammation Research. Birkhäuser, Basel, pp. 167–179

  • Gu Y, Xiao L, Gu W, Chen S, Feng Y, Wang J, Wang Z, Cai Y, Chen H, Xu X, Shi Y, Zhang M, Xu K, Yang T (2018) rs227982 and rs227981 in PDCD1 gene are functional SNPs associated with T1D risk in East Asian. Acta Diabetol 55:813–819

    CAS  PubMed  Google Scholar 

  • Guo SW, Magnuson VL, Schiller JJ et al (2006) Meta-analysis of vitamin D receptor polymorphisms and type 1 diabetes: a HuGE review of genetic association studies. Am J Epidemiol 164:7111–7124

    Google Scholar 

  • Guo L, Han J, Guo H, Lv D, Wang Y (2019) Pathway and network analysis of genes related to osteoporosis. Mol Med Rep 20:985–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann L, Koch A, Sur S, Hoefer N, Glaeser C, Schulz S, Gross M, Franke A, Nöthlings U, Zacharowski K, Schumann RR (2013) Association of a common TLR-6 polymorphism with coronary artery disease – implications for healthy ageing? Immun Ageing 10:43

    PubMed  PubMed Central  Google Scholar 

  • Hannelius U, Beam CA, Ludvigsson J (2020) Efficacy of GAD-alum immunotherapy associated with HLA-DR3-DQ2 in recently diagnosed type 1 diabetes. Diabetologia. https://doi.org/10.1007/s00125-020-05227-z

  • Hill AV, Allsopp CE et al (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    CAS  PubMed  Google Scholar 

  • Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9(7):811–818

    CAS  PubMed  Google Scholar 

  • Hope S, Melle I, Aukrust P, Steen NE, Birkenaes AB, Lorentzen S, Agartz I, Ueland T, Andreassen OA (2009) Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord 11:726–734

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12:85–98

    CAS  PubMed  Google Scholar 

  • Kelly A, Powis SH et al (1991) Second proteasome-related gene in the human MHC class II region. Nature:353

  • Lammert E, Brown J, Melton DA (2000) Notch gene expression during pancreatic organogenesis. Mech Dev 94:199–203

    CAS  PubMed  Google Scholar 

  • Li S, Paulsson KM, Chen S, Sjögren HO, Wang P (2000) Tapasin is required for efficient peptide binding to transporter associated with antigen processing. J Biol Chem 275:1581–1586

    CAS  PubMed  Google Scholar 

  • Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, Workman CT, Rigina O, Rapacki K, Stærfeldt HH, Brunak S, Jensen TS, Lage K (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14:61–64

    CAS  PubMed  Google Scholar 

  • Liao W, Lin JX, Leonard WJ (2011) IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 23:598–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg DAB (2000) Internet access to the national library of medicine. Eff Clin Pract 4:256–260

    Google Scholar 

  • Lu J, Liu J, Li L et al (2020) Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Trans Immunol 9:e1122

    Google Scholar 

  • Mehers KL, Gillespie KM (2008) The genetic basis for type 1 diabetes. Br Med Bull 88:115–129

    CAS  PubMed  Google Scholar 

  • Morro M, Vila L, Franckhauser S et al (2020) Vitamin D receptor overexpression in β-cells ameliorates diabetes in mice. Diabetes 69:927–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noble JA, Erlich HA (2012) Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2:a007732

    PubMed  PubMed Central  Google Scholar 

  • Nyaga DM, Vickers MH, Jefferies C, Perry JK, O’Sullivan JM (2018) Type 1 diabetes mellitus-associated genetic variants contribute to overlapping immune regulatory networks. Front Genet 9:535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta S, Ohsawa I, Kamino K et al (2004) Mitochondrial ALDH2 deficiency as an oxidative stress. Ann N Y Acad Sci 1011:36–44

    CAS  PubMed  Google Scholar 

  • Ounissi-Benkalha H, Polychronakos C (2008) The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 14:268–275

    CAS  PubMed  Google Scholar 

  • Patrie KL, Drescher AJ et al (2002) Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1. J Biol Chem 277:30183–30190

    CAS  PubMed  Google Scholar 

  • Pillay J, Armstrong MJ, Butalia S, Donovan LE, Sigal RJ, Chordiya P, Dhakal S, Vandermeer B, Hartling L, Nuspl M, Featherstone R, Dryden DM (2015) Behavioral programs for type 1 diabetes mellitus a systematic review and meta-analysis. Ann Intern Med 163:836–847

    PubMed  Google Scholar 

  • Pociot F (2017) Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunol 6:e162

    Google Scholar 

  • Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C, Morahan G, Nierras CR, Todd JA, Rich SS, Nerup J (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59:1561–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram R, Morahan G (2017) Effects of type 1 diabetes risk alleles on immune cell gene expression. Genes 8:167

    PubMed Central  Google Scholar 

  • Rewers M, Ludvigsson J (2016) Environmental risk factors for type 1 diabetes. Lancet 387:2340–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rich SS (1990) Mapping genes in diabetes: genetic epidemiological perspective. Diabetes 39:1315–1319

    CAS  PubMed  Google Scholar 

  • Roep BO (2003) The role of T cells in pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 46:305–321

    CAS  PubMed  Google Scholar 

  • Rojas M, Zhang W et al (2013) Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury. 8:e84357

  • Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–114

    CAS  PubMed  Google Scholar 

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from International Diabetes Federation atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  • Sea K, Sohn SE, Durazo A et al (2015) Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase. J Biol Chem 290:2405–2418

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp RC, Abdulrahim M et al (2015) Genetic variations of PTPN2 and PTPN22: role in the pathogenesis of type 1 diabetes and Crohn’s disease. Front Cell Infect Microbiol 5:95

    PubMed  PubMed Central  Google Scholar 

  • Smyth DJ, Howson JMM, Payne F et al (2006) Analysis of polymorphisms in 16 genes in type 1 diabetes that have been associated with other immune-mediated diseases. BMC Med Genet 7:20

    PubMed  PubMed Central  Google Scholar 

  • Solt LA, Burris TP (2015) Th17 cells in type 1 diabetes: a future perspective. Diabetes Manag (Lond) 5:247–250

    CAS  Google Scholar 

  • Sona MK, Myung SK, Park K et al (2018) Type 1 diabetes mellitus and risk of cancer: a meta-analysis of observational studies. Jpn J Clin Oncol 48:426–433

    PubMed  Google Scholar 

  • Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57:176–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Xia Y, Liu Y, Wang Y, Luo S, Lin J, Huang G, Li X, Xie Z, Zhou Z (2019) Polymorphisms in NLRP1 gene are associated with type 1 diabetes. J Diabetes Res 2019:1–9. https://doi.org/10.1155/2019/7405120

    Article  CAS  Google Scholar 

  • Tomihara M, Kawasaki E, Nakajima H et al (2004) Intermittent and recurrent hepatomegaly due to glycogen storage in a patient with type 1 diabetes: genetic analysis of the liver glycogen phosphorylase gene (PYGL). Diabetes Res Clin Pract 65:175–182

    Google Scholar 

  • Turei D, Korcsmaros T, Saez-Rodriguez J (2016) OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat Methods 13(12):966–967

    CAS  PubMed  Google Scholar 

  • Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeweun JP (2004) Genetics and biology of vitamin D receptor polymorphisms. Gene 338:143–156

    CAS  PubMed  Google Scholar 

  • Zanoni I, Granucci F (2013) Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol 3:32. https://doi.org/10.3389/fcimb.2013.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zar JH (1999) Biostatistical analysis 4th (ed) prentice hall, NJ, USA

  • Zella JB, DeLuca HF (2003) Vitamin D and autoimmune diabetes. J Cell Biochem 88:216–222

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Justin O’Sullivan of the Liggins Institute, University of Auckland, New Zealand for allowing use of some data of T1D-associated eQTLs and genes from his published work (Nyaga et al. 2018). The author is also grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived and designed by SS. All the bioinformatic analysis, manuscript drafting and editing was done by SS.

Corresponding author

Correspondence to Saubashya Sur.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethics approval and consent to participate

No human or animal participants were used in this research.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, S. In silico analysis reveals interrelation of enriched pathways and genes in type 1 diabetes. Immunogenetics 72, 399–412 (2020). https://doi.org/10.1007/s00251-020-01177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-020-01177-3

Keywords

Navigation