Skip to main content
Log in

Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Many fishes express high levels of intraspecific variability, often linked to resource partitioning. Several studies show that a species’ evolutionary trajectory of adaptive divergence can undergo reversals caused by changes in its environment. Such a reversal in neutral genetic and morphological variation among lake trout Salvelinus namaycush ecomorphs appears to be underway in Lake Superior. However, a water depth gradient in neutral genetic divergence was found to be associated with intraspecific diversity in the lake. To investigate patterns of adaptive immunogenetic variation among lake trout ecomorphs, we used Illumina high-throughput sequencing. The population’s genetic structure of the major histocompatibility complex (MHC Class IIβ exon 2) and 18 microsatellite loci were compared to disentangle neutral and selective processes at a small geographic scale. Both MHC and microsatellite variation were partitioned more by water depth stratum than by ecomorph. Several metrics showed strong clustering by water depth in MHC alleles, but not microsatellites. We report a 75% increase in the number of MHC alleles shared between the predominant shallow and deep water ecomorphs since a previous lake trout MHC study at the same locale (c. 1990s data). This result is consistent with the reverse speciation hypothesis, although adaptive MHC polymorphisms persist along an ecological gradient. Finally, results suggested that the lake trout have multiple copies of the MHC II locus consistent with a historic genomic duplication event. Our findings indicated that conservation approaches for this species could focus on managing various ecological habitats by depth, in addition to regulating the fisheries specific to ecomorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE et al (2013) Hybridization and speciation. J Evol Biol 26:229–246. doi:10.1111/j.1420-9101.2012.02599.x

    Article  CAS  PubMed  Google Scholar 

  • Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M (2003) Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol 54:119–126

    Google Scholar 

  • Aguilar A, Garza JC (2006) A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum). Mol Ecol 15:923–937

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and evolution of salmonid fishes: evolutionary genetics of fishes. Plenum Press, New York

    Book  Google Scholar 

  • Allendorf FW, Berry O, Ryman N (2014) So long to genetic diversity, and thanks for all the fish. Mol Ecol 23:23–25

    Article  PubMed  Google Scholar 

  • Angers B, Bernatchez L, Angers A, Desgroseillers L (1995) Specific microsatellite loci for brook charr (Salvelinus fontinalis) reveal strong population subdivision on a microgeographic scale. J Fish Biol 47:177–185

    Article  CAS  Google Scholar 

  • Austin JA, Allen J (2011) Sensitivity of summer Lake Superior thermal structure to meteorological forcing. Limnol Oceanogr 56:1141–1154

    Article  Google Scholar 

  • Baillie SM, Muir AM, Scribner K, Bentzen P, Krueger CC (2016a) Loss of genetic diversity and reduction of genetic distance among lake trout Salvelinus namaycush ecomorphs, Lake Superior 1959 to 2013. J Great Lakes Res 42:204–216. doi:10.1016/j.jglr.2016.02.001

    Article  Google Scholar 

  • Baillie SM, Muir AM, Krueger CC, Scribner K, Bentzen P (2016b) Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush. BMC Evol Biol 16:219. doi:10.1186/s12862-016-0788-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evolution Biol 16:363–377

    Article  CAS  Google Scholar 

  • Borghans JAM, Beltman JB, De Boer RJ (2004) MHC polymorphism under host-pathogen coevolution. Immunogenetics 55:732–739. doi:10.1007/s00251-003-0630-5

    Article  CAS  PubMed  Google Scholar 

  • Bronte CR, Ebener MP, Schreiner DR, DeVault DS, Petzold MM, Jensen DA, Richards C, Lozano SJ (2003) Fish community change in Lake Superior, 1970–2000. Can J Fish Aquat Sci 60:1552–1574

    Article  Google Scholar 

  • Cammen K, Hoffmann JI, Knapp LA, Harwood J, Amos W (2011) Geographic variation of the major histocompatibility complex in Eastern Atlantic grey seals (Halichoerus grypus). Mol Biol 20:740–752

    CAS  Google Scholar 

  • Carvajal-Rodriguez A, de Una-Alvarez J (2011) Assessing significance in high throughput experiments by sequential goodness of fit and q-value estimation. PLoS Genet 6:e24700

    Article  CAS  Google Scholar 

  • Chain FJJ, Feulner PGD, Panchal M, Eizaguirre C, Samonte IE et al (2014) Extensive copy-number variation of young genes across stickleback populations. PLoS Genet 10:e1004830. doi:10.1371/journal.pgen.1004830

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavarie L, Howland KL, Tonn WM (2013) Sympatric polymorphism in lake trout: the coexistence of multiple shallow-water morphotypes in Great Bear Lake. Trans Am Fish Soc 142:814–823

    Article  Google Scholar 

  • Cheng Y, Stuart A, Morris K, Taylor R, Siddle H, Deakin J, Jones M, Amemiya CT, Belov K (2012) Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics 13:87. doi:10.1186/1471-2164-13-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.r-project.org

  • Croisetiere S, Tarte P, Bernatchez L, Belhumeur P (2008) Identification of MHC class IIβ resistance/susceptibility alleles to Aeromonas salmonicida in brook charr (Salvelinus fontinalis). Mol Immunol 45:3107–3116

    Article  CAS  PubMed  Google Scholar 

  • De Leon LF, Raeymaekers JAM, Bermingham E, Podos J, Herrel A, Hendry AP (2011) Exploring possible human influences on the evolution of Darwin’s finches. Evolution 65:2258–2272. doi:10.1111/j.1558-5646.2011.01297.x

  • Delport W, Scheffler K, Seoighe C (2010) Frequent toggling between alternative amino acids is driven by selection in HIV-1. PLoS Genet. doi:10.1371/journal.ppat.1000242

    Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L (2007) Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution 61:2154–2164

    Article  CAS  PubMed  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Bernatchez L (2009) MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Phil Trans Roy Soc B 364:1555–1565

    Article  CAS  Google Scholar 

  • Dorschner MO, Duris T, Bronte CR, Burnham Curtis MK, Phillips RB (2000) High levels of MHC class II allelic diversity in lake trout from Lake Superior. J Hered 91:359–363

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eizaguirre C, Baltazar-Soares M (2014) Evolutionary conservation—evaluating the adaptive potential of species. Evol Appl 7:963–967. doi:10.1111/eva.12227

    Article  PubMed Central  Google Scholar 

  • Ejsmond MJ, Babik W, Radwan J (2010) MHC allele frequency distributions under parasite-driven selection: a simulation model. BMC Evol Biol 10:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekblom R, Saether SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, Kålås JA, Höglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451

    Article  PubMed  Google Scholar 

  • Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320

    Article  CAS  Google Scholar 

  • Englbrecht C (2000) The impact of stocking on the genetic integrity of Arctic charr (Salvelinus) populations from the alpine region. Mol Ecol 11:1017–1027

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraley C, Raftery AE (2009) MCLUST version 3 for R: normal mixuture modeling and model-based clustering. Technical report 504. University of Washington, Seattle https://www.stat.washington.edu/research/reports/2012/tr504.pdf

    Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    Article  CAS  PubMed  Google Scholar 

  • Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L et al (2015) High-density mapping of the MHC identifies a shared role for HLA-DRB1[ast]01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 47:172–179. doi:10.1038/ng.3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Great Lakes Fishery Commission (2011). Strategic vision of the Great Lakes fishery commission 2011–2020. Ann Arbor, Michigan. http://www.glfc.org/pubs/SpecialPubs/StrategicVision2012.pdf

  • Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM (2015) A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 15:32. doi:10.1186/s12862-015-0309-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the upper Great Lakes. Proc Roy Soc B 270:425–433

    Article  CAS  Google Scholar 

  • Guinand B, Page KS, Burnham-Curtis MK, Scribner KT (2012) Genetic signatures of historical bottlenecks in sympatric lake trout (Salvelinus namaycush) morphotypes in Lake Superior. Environ Biol Fish 95:323–334

    Article  Google Scholar 

  • Herdegen M, Babik W, Radwan J (2014) Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure. J Evol Biol 27:2347–2359. doi:10.1111/jeb.12476

    Article  CAS  PubMed  Google Scholar 

  • Holeck KT, Mills EL, MacIsaac HJ, Dochoda MR, Colautti RI, Ricciardi A (2004) Bridging troubled waters: biological invasions, transoceanic shipping, and the Laurentian Great Lakes. Bioscience 54:919–929. doi:10.1641/0006-3568

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection and the evolutionary history of major histocompatibility complex loci. Front Biosci 3:509–516

    Article  Google Scholar 

  • Kalinowski S (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kamath PL, Getz WM (2012) Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations. PLoS Genet 7:e50971

    Article  CAS  Google Scholar 

  • King TL, Lubinski BA, Burnham-Curtis MK, Stott W, Morgan RP II (2012) Tools for the management and conservation of genetic diversity in brook trout (Salvelinus fontinalis): tri- and tetranucleotide microsatellite markers for the assessment of genetic diversity, phylogeography, and historical demographics. Mol Ecol Resour 4:539–543

    Google Scholar 

  • Knafler GJ, Grueber CE, Sutton JT, Jamieson IG (2017) Differential patterns of diversity at microsatellite, MHC, and TLR loci in bottlenecked South Island saddleback populations. New Zeal J Ecol 41:98–106. doi:10.20417/nzjecol.41.8

    Google Scholar 

  • Kosakovsky-Pond SL, Frost SWD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  Google Scholar 

  • Krueger CC, Ihssen PE (1995) Review of genetics of lake trout in the Great Lakes: history, molecular genetics, physiology, strain comparisons, and restoration management. J Great Lakes Res 21:348–363

    Article  Google Scholar 

  • Lamaze FC, Pavey SA, Normandeau E, Roy G, Garant D, Bernatchez L (2014) Neutral and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis). Mol Ecol 23:1730–1748

    Article  CAS  PubMed  Google Scholar 

  • Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol Ecol 10:2525–2539

    Article  CAS  PubMed  Google Scholar 

  • Larsen DP, Kaufmann P, Kincaid TM, Urquhart NS (2004) Detecting persistent changes in the habitat of salmon-bearing streams in the Pacific Northwest. Can J Fish Aquat Sci 61:283–291

    Article  Google Scholar 

  • Larson WA, Lisi PJ, Seeb JE, Seeb LW, Schindler DE (2016) Major histocompatibility complex diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon. J Evol Biol 29:1846–1859. doi:10.1111/jeb.12926

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Jeon JT (2008) Methods to detect and analyze copy number variations at the genome-wide and locus-specific levels. Cytogenet Genome Res 123:333–342. doi:10.1159/000184725

    Article  CAS  PubMed  Google Scholar 

  • Lighten J, Van Oosterhout C, Paterson IG, McMullan M, Bentzen P (2014) Ultra-deep Illumina sequencing accurately identifies MHC class IIβ alleles and provides evidence for copy number variation in the guppy (Poecilia reticulata). Mol Ecol Resour 14:753–767

    Article  CAS  PubMed  Google Scholar 

  • Loch TP, Faisal M (2015) Emerging flavobacterial infections in fish: a review. J Adv Res 6:283–300. doi:10.1016/j.jare.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  • Luo MF, Pan HJ, Liu ZJ, Li M (2012) Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana). BMC Evol Biol 12:207

    Article  PubMed  PubMed Central  Google Scholar 

  • McGowan CR, Davidson EA, Woram RA, Danzmann RG, Ferguson MM, Davidson WS (2004) Ten polymorphic microsatellite markers from Arctic charr (Salvelinus alpinus): linkage analysis and amplification in other salmonids. Animal Genet 35:479–481

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Withler RE, Beacham TD (1997) Molecular evolution at MHC genes in two populations of Chinook salmon (Onchorhynchus tshawytscha). Mol Ecol 6:937–954

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Kaukinen KH, Beacham TD, Withler RE (2001) Geographic heterogeneity in natural selection on an MHC locus in sockeye salmon. Genetica 111:237–257

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Kaukinen KH, Schulze AD (2002) Expansion and contraction of major histocompatibility complex genes: a teleostean example. Immunogenetics 53:941–963

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Li S, Ming TJ, Kaukinen KH, Schulze AD (2006) The salmonid MHC class I: more ancient loci uncovered. Immunogenetics 58:571–589

    Article  CAS  PubMed  Google Scholar 

  • Muir AM, Bronte CR, Zimmerman MS, Quinlan HR, Glase JD, Krueger CC (2014) Ecomorphological diversity of lake trout at Isle Royale, Lake Superior. Trans Am Fish Soc 143:972–987

    Article  Google Scholar 

  • Muir AM, Hansen M, Bronte CR, Krueger C (2015) If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish Fish 16:1–14

    Article  Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky-Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet. doi:10.1371/journal.pgen.1002764

    PubMed  PubMed Central  Google Scholar 

  • Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky-Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. doi:10.1093/molbev/mst030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noakes MA, Reimer T, Phillips RB (2003) Genotypic characterization of an MHC class II locus in lake trout (Salvelinus namaycush) from Lake Superior by single-stranded conformational polymorphism analysis and reference strand-mediated conformational analysis. Mar Biotechnol 5:270–278

    Article  CAS  PubMed  Google Scholar 

  • Nordmo R, Ramstad A (1999) Variables affecting the challenge pressure of Aeromonas salmonicida and Vibrio salmonicida in Atlantic salmon (Salmo salar L.) Aquaculture 171:1–12

    Article  Google Scholar 

  • Nowak MA, Tarczy-Hornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex molecules in an individual. Proc Natl Acad Sci U S A 89:10896–10899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York. doi:10.1007/978-3-642-86659-3

    Book  Google Scholar 

  • Oliver MK, Lambin X, Cornulier T, Piertney SB (2009) Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol Ecol 18:80–92

    CAS  PubMed  Google Scholar 

  • Olsen JB, Bentzen P, Seeb JE (1998) Characterization of seven microsatellite loci derived from pink salmon. Mol Ecol 7:1087–1089

    CAS  PubMed  Google Scholar 

  • O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquatic Sci 53:2292–2298

  • Page K, Scribner K, Burnham-Curtis M (2004) Genetic diversity of wild and hatchery lake trout populations: relevance for management and restoration in the Great Lakes. Trans Am Fish Soc 133:674–691

    Article  Google Scholar 

  • Pavey SA, Lamaze FC, Garant D, Bernatchez L (2011) Full length MHC IIβ exon 2 primers for salmonids: a new resource for next generation sequencing. Conserv Genet Resour 3:665–667

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel—population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel—population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perreault-Payette A, Muir AM, Goetz F, Perrier C, Normandeau E, Sirois P, Bernatchez L (2017) Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Mol Ecol. doi:10.1111/mec.14018

    PubMed  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    Article  PubMed  Google Scholar 

  • Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39

    Article  PubMed  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pruett C, Winker K (2008) The effects of sample size on population genetic diversity estimates in song sparrows Melospiza melodia. J Avian Biol 39:252–256

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetics diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Rico Y, Morris-Pocock J, Zigouris J, Nocera JJ, Kyle CJ (2015) Lack of spatial immunogenetic structure among wolverine (Gulo gulo) populations suggestive of broad scale balancing selection. PLoS Genet 10:e0140170

    Article  CAS  Google Scholar 

  • Rico Y, Ethier DM, Davy CM, Sayers J, Weir RD, Swanson BJ, Nocera JJ, Kyle CJ (2016) Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. Evol Appl 9:1271–1284. doi:10.1111/eva.12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf JF (2015) Thin Plate Spline (TPS) suite of programs. http://life.bio.sunysb.edu/morph/

  • Rollins MF, Vu NV, Spies IB, Kalinowski ST (2009) Twelve microsatellite loci for lake trout (Salvelinus namaycush). Permanent Genet Resour Note 9:871–873. doi:10.1111/j.1755-0998.2008.02403

    CAS  Google Scholar 

  • Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499. doi:10.1093/bioinformatics/btl427

    Article  CAS  PubMed  Google Scholar 

  • Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetics applications. Can J Fish Aquat Sci 53:833–841

    Article  CAS  Google Scholar 

  • Scribner KT, Lowe WH, Landguth E, Luikart G, Infante DM, Whelan GE, Muhlfeld CC (2016) Applications of genetic data to improve management and conservation of river fishes and their habitats. Fisheries 41:178–188. doi:10.1080/03632415.2016.1150838

    Article  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MA, Hedrick RP, Nehring RB, Stet RJM, Secombes C, Parham P (2001) Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 166:3297–3308

    Article  CAS  PubMed  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Phil Trans Roy Soc London Ser B 277:979–988

    Article  CAS  Google Scholar 

  • Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2:341–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuglik MT, Radwan J, Babik W (2011) jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicons sequencing. Mol Ecol Resour 11:739–742

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobler M, Plath M, Riesch R, Schlupp I, Grasse A et al (2014) Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. J Evol Biol 27:960–974

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Van Oosterhout C, Joyce DA, Cummings SM, Blais J, Barson NJ et al (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulata). Evolution 60:2562–2574

    Article  CAS  PubMed  Google Scholar 

  • Volis S, Ormanbekova D, Yermekbayev K (2015) Role of phenotypic plasticity and population differentiation in adaptation to novel environmental conditions. Ecol Evol 5:3818–3829. doi:10.1002/ece3.1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Williamson KS, Cordes JF, May BP (2002) Characterization of microsatellite loci in Chinook salmon (Oncorhynchus tshawytscha) and cross species amplification in other salmonids. Mol Ecol Notes 2:17–19

    Article  CAS  Google Scholar 

  • Woelfing B, Traulsen A, Milinski M, Boehm T (2009) Does intra-individual major histocompatibility complex diversity keep a golden mean? Phil Trans Roy Soc London Ser B 364:117–128

    Article  Google Scholar 

  • Zheng D, Mai K, Liu S, Cao L, Liufu Z, Xu W, Tan B, Zhang W (2004) Effect of temperature and salinity on virulence of Edwardsiella tarda to Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel). Aquac Res 35:494–500

    Article  Google Scholar 

  • Zimmerman MS, Krueger CC (2009) An ecosystem perspective on re-establishing native deepwater fishes in the Laurentian Great Lakes. N Am J Fish Manag 29:1352–1371

    Article  Google Scholar 

  • Zimmerman MS, Krueger CC, Eshenroder RL (2006) Phenotypic diversity of lake trout in Great Slave Lake: differences in morphology, buoyancy, and habitat depth. Trans Am Fish Soc 135:1056–1067

    Article  Google Scholar 

  • Zimmerman MS, Krueger CC, Eshenroder RL (2007) Morphological and ecological differences between shallow- and deep-water lake trout in Lake Mistassini, Quebec. J Great Lakes Res 33:156–169

    Article  Google Scholar 

Download references

Acknowledgements

Two anonymous reviewers and the handling editor of Immunogenetics provided helpful comments on this manuscript. M. McBride, L. Anstey, and C. Angelidis (Marine Gene Probe lab, Dalhousie University) helped with microsatellite genotyping work at various stages of the project. We thank S. Sivertson, E. Strom, and B. Strom for their hospitality at Washington and Barnam Islands, adjacent to Isle Royale. J. Pyatskowit, C.R. Bronte, M.S. Zimmerman, H.R. Quinlan, and J.D. Glase provided cheerful and able assistance with the Isle Royale fieldwork. This research was funded by the Great Lakes Fishery Commission grant 2005_BEN_44001.

Author information

Authors and Affiliations

Authors

Contributions

S.M.B. wrote the article based on R.H.’s Honours Thesis work, which focused on MHC diversity among lake trout at Isle Royale, Lake Superior. MHC labwork and genotyping was performed by S.M.B. and R.H. Microsatellite labwork and genotyping was performed by S.M.B. at the latter stages of the project. S.M.B., P.B., C.C.K., and A.M.M. designed the study and managed the project. C.C.K. and A.M.M. obtained funding from the Great Lakes Fishery Commission and performed fieldwork to collect and process contemporary samples. All authors read, edited, and approved this version of the manuscript.

Corresponding author

Correspondence to Shauna M. Baillie.

Ethics declarations

Funding

This research was funded by the Great Lakes Fishery Commission grant 2005_BEN_44001.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Sampling and handling of fish was in accordance with the guidelines for the care and use of fishes by the American Fisheries Society (http://fisheries.org/docs/wp/Guidelines-for-Use-of-Fishes.pdf).

Electronic supplementary material

Figure S1

(PDF 608 kb)

Figure S2

(PDF 463 kb)

Figure S3

(PDF 931 kb)

Table S1

(PDF 651 kb)

Table S2

(PDF 395 kb)

Table S3

(PDF 365 kb)

Table S4

(PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baillie, S.M., Hemstock, R.R., Muir, A.M. et al. Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout. Immunogenetics 70, 53–66 (2018). https://doi.org/10.1007/s00251-017-0996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-017-0996-4

Keywords

Navigation