Skip to main content
Log in

Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood?

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The central paradigm of conventional MHC-restricted T cells is that they respond specifically to foreign peptides, while displaying tolerance to self-antigens. In contrast, it is now becoming clear that a number of innate-like T cell subsets—CD1-restricted T cells, Vγ9Vδ2 T cells, and MAIT cells—may operate by different rules: rather than focusing on the recognition of specific foreign antigens, these T cells all appear to respond to alterations to lipid-related pathways. By monitoring perturbations to the “lipidome,” these T cells may be able to spring into action to deal with physiological situations that are of self as well as microbial origin. iNKT cells are a prime example of this type of lipidome-reactive T cell. As a result of their activation by self lyso-phospholipid species that are generated downstream of blood lipid oxidation, human iNKT cells in the vasculature may respond sensitively to a variety of oxidative stresses. Some of the cytokines produced by activated iNKT cells have angiogenic effects (e.g., GM-CSF, IL-8), whereas others (e.g., IFN-γ) are pro-inflammatory factors that can propagate vascular pathology by influencing the functions of macrophages and dendritic cells. Consistent with this, evidence is accumulating that iNKT cells contribute to atherosclerosis, which is one of the most common inflammatory pathologies, and one that is integrally related to characteristics of the lipidome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angenieux C, Salamero J, Fricker D, Cazenave JP, Goud B, Hanau D, de La Salle H (2000) Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. J Biol Chem 275:37757–37764

    Article  CAS  PubMed  Google Scholar 

  • Aslanian AM, Chapman HA, Charo IF (2005) Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 25:628–632

    Article  CAS  PubMed  Google Scholar 

  • Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372:691–694

    Article  CAS  PubMed  Google Scholar 

  • Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162:161–167

    CAS  PubMed  Google Scholar 

  • Belmant C, Espinosa E, Poupot R, Peyrat MA, Guiraud M, Poquet Y, Bonneville M, Fournie JJ (1999) 3-Formyl-1-butyl pyrophosphate A novel mycobacterial metabolite-activating human gammadelta T cells. J Biol Chem 274:32079–32084

    Article  CAS  PubMed  Google Scholar 

  • Bendelac A, Killeen N, Littman DR, Schwartz RH (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263:1774–1778

    Article  CAS  PubMed  Google Scholar 

  • Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865

    Article  CAS  PubMed  Google Scholar 

  • Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1:177–186

    Article  CAS  PubMed  Google Scholar 

  • Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J (2014) MAITs, MR1 and vitamin B metabolites. Curr Opin Immunol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  • Bix M, Locksley RM (1995) Natural T cells. Cells that co-express NKRP-1 and TCR. J Immunol 155:1020–1022

    CAS  PubMed  Google Scholar 

  • Bobryshev YV, Lord RS (2005) Co-accumulation of dendritic cells and natural killer T cells within rupture-prone regions in human atherosclerotic plaques. J Histochem Cytochem 53:781–785

    Article  CAS  PubMed  Google Scholar 

  • Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890

    Article  CAS  PubMed  Google Scholar 

  • Brigl M, Brenner MB (2010) How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin Immunol 22:79–86

    Article  CAS  PubMed  Google Scholar 

  • Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Brossay L, Tangri S, Bix M, Cardell S, Locksley R, Kronenberg M (1998) Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J Immunol 160:3681–3688

    CAS  PubMed  Google Scholar 

  • Brown DR, Fowell DJ, Corry DB, Wynn TA, Moskowitz NH, Cheever AW, Locksley RM, Reiner SL (1996) Beta 2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J Exp Med 184:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Bussolino F, Ziche M, Wang JM, Alessi D, Morbidelli L, Cremona O, Bosia A, Marchisio PC, Mantovani A (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Hsu YH, Li S, Woods VL Jr, Dennis EA (2013) Structural basis of specific interactions of Lp-PLA2 with HDL revealed by hydrogen deuterium exchange mass spectrometry. J Lipid Res 54:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II deficient mice. J Exp Med 182:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Chamoto K, Guo T, Imataki O, Tanaka M, Nakatsugawa M, Ochi T, Yamashita Y, Saito AM, Saito TI, Butler MO, Hirano N (2016) CDR3beta sequence motifs regulate autoreactivity of human invariant NKT cell receptors. J Autoimmun 68:39–51

    Article  CAS  PubMed  Google Scholar 

  • Chan WL, Pejnovic N, Hamilton H, Liew TV, Popadic D, Poggi A, Khan SM (2005) Atherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cells. Circ Res 96:675–683

    Article  CAS  PubMed  Google Scholar 

  • Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2008) Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112:1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Paul WE (1997) Cultured NK1.1+ CD4+ T cells produce large amounts of IL-4 and IFN- gamma upon activation by anti-CD3 or CD1. J Immunol 159:2240–2249

    CAS  PubMed  Google Scholar 

  • Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Hirata K, Ishida T, Quertermous T, Cooper AD (2002) Endothelial lipase: a new lipase on the block. J Lipid Res 43:1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Christiansen D, Milland J, Mouhtouris E, Vaughan H, Pellicci DG, McConville MJ, Godfrey DI, Sandrin MS (2008) Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 6:e172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen NR, Garg S, Brenner MB (2009) Antigen presentation by CD1 Lipids, T Cells, and NKT Cells in microbial immunity. Adv Immunol 102:1–94

    Article  CAS  PubMed  Google Scholar 

  • Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, Godfrey DI (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A 105:11287–11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox D, Fox L, Tian R, Bardet W, Skaley M, Mojsilovic D, Gumperz J, Hildebrand W (2009) Determination of cellular lipids bound to human CD1d molecules. PLoS One 4:e5325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croset M, Brossard N, Polette A, Lagarde M (2000) Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345(Pt 1):61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva RP, Kelly KB, Al Rajabi A, Jacobs RL (2014) Novel insights on interactions between folate and lipid metabolism. Biofactors 40:277–283

    Article  PubMed  CAS  Google Scholar 

  • de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, Malm D, Berg T, Paoletti S, Maitre B, Mourey L, Salamero J, Cazenave JP, Hanau D, Mori L, Puzo G, De Libero G (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324

    Article  PubMed  CAS  Google Scholar 

  • Exley M, Garcia J, Balk SP, Porcelli S (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8- T cells. J Exp Med 186:109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exley MA, Tahir SM, Cheng O, Shaulov A, Joyce R, Avigan D, Sackstein R, Balk SP (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d- reactive T cells that can suppress mixed lymphocyte responses. J Immunol 167:5531–5534

    Article  CAS  PubMed  Google Scholar 

  • Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M, Kistowska M, Forss-Petter S, Ni G, Colone A, Singhal A, Berger J, Xia C, Mori L, De Libero G (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13:474–480

    Article  CAS  PubMed  Google Scholar 

  • Field JJ, Nathan DG, Linden J (2011) Targeting iNKT cells for the treatment of sickle cell disease. Clin Immunol 140:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox LM, Cox DG, Lockridge JL, Wang X, Chen X, Scharf L, Trott DL, Ndonye RM, Veerapen N, Besra GS, Howell AR, Cook ME, Adams EJ, Hildebrand WH, Gumperz JE (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freigang S, Zadorozhny V, McKinney MK, Krebs P, Herro R, Pawlak J, Kain L, Schrantz N, Masuda K, Liu Y, Savage PB, Bendelac A, Cravatt BF, Teyton L (2010) Fatty acid amide hydrolase shapes NKT cell responses by influencing the serum transport of lipid antigen in mice. J Clin Invest 120:1873–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3:e113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerhardt T, Ley K (2015) Monocyte trafficking across the vessel wall. Cardiovasc Res 107:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Murakawa M, Kadoshima-Yamaoka K, Tanaka Y, Nagahira K, Fukuda Y, Nishimura T (2009) Murine NKT cells produce Th17 cytokine interleukin-22. Cell Immunol 254:81–84

    Article  CAS  PubMed  Google Scholar 

  • Gumperz JE, Brenner MB (2001) CD1-specific T cells in microbial immunity. Curr Opin Immunol 13:471–478

    Article  CAS  PubMed  Google Scholar 

  • Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA, Cardell S, Brenner MB, Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T Cells revealed by CD1d tetramer staining. J Exp Med 195:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde S, Chen X, Keaton JM, Reddington F, Besra GS, Gumperz JE (2007) NKT cells direct monocytes into a DC differentiation pathway. J Leukoc Biol 81:1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Kain L, Webb B, Anderson BL, Deng S, Holt M, Costanzo A, Zhao M, Self K, Teyton A, Everett C, Kronenberg M, Zajonc DM, Bendelac A, Savage PB, Teyton L (2014) The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kain L, Costanzo A, Webb B, Holt M, Bendelac A, Savage PB, Teyton L (2015) Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol Immunol 68:94–97

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    Article  CAS  PubMed  Google Scholar 

  • Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong CH, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7:978–986

    Article  CAS  PubMed  Google Scholar 

  • Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–723

    CAS  PubMed  Google Scholar 

  • Koseki H, Imai K, Nakayama F, Sado T, Moriwaki K, Taniguchi M (1990) Homogenous junctional sequence of the V14+ T-cell antigen receptor alpha chain expanded in unprimed mice. Proc Natl Acad Sci U S A 87:5248–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl KF, Mizutani Y, Imai K, Taniguchi M (1991) Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci U S A 88:7518–7522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronenberg M, Rudensky A (2005) Regulation of immunity by self-reactive T cells. Nature 435:598–604

    Article  CAS  PubMed  Google Scholar 

  • Kyriakakis E, Cavallari M, Andert J, Philippova M, Koella C, Bochkov V, Erne P, Wilson SB, Mori L, Biedermann BC, Resink TJ, De Libero G (2010) Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur J Immunol 40(11):3268–3279

    Article  CAS  PubMed  Google Scholar 

  • Lantz O, Bendelac A (1994) An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J Exp Med 180:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, Chaconas G, Kubes P (2010) An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11:295–302

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA (2013) Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 14:1146–1154

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA (2015) Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43:566–578

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kanellakis P, Hosseini H, Cao A, Deswaerte V, Tipping P, Toh BH, Bobik A, Kyaw T (2015a) A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE−/− mice by reducing lesion necrosis and inflammation. Cardiovasc Res 109(2):305–317

    Article  PubMed  Google Scholar 

  • Li Y, To K, Kanellakis P, Hosseini H, Deswaerte V, Tipping P, Smyth MJ, Toh BH, Bobik A, Kyaw T (2015b) CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ Res 116:245–254

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Field JJ, Yu JC, Ken R, Neuberg D, Nathan DG, Linden J (2013) NF-kappaB is activated in CD4+ iNKT cells by sickle cell disease and mediates rapid induction of adenosine A2A receptors. PLoS One 8:e74664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Sagaseta J, Sibener LV, Kung JE, Gumperz J, Adams EJ (2012) Lysophospholipid presentation by CD1d and recognition by a human natural killer T-cell receptor. EMBO J 31:2047–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luoma AM, Castro CD, Adams EJ (2014) gammadelta T cell surveillance via CD1 molecules. Trends Immunol 35:613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Major AS, Wilson MT, McCaleb JL, Ru Su Y, Stanic AK, Joyce S, Van Kaer L, Fazio S, Linton MF (2004) Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 24:2351–2357

    Article  CAS  PubMed  Google Scholar 

  • Mandel H, Sharf R, Berant M, Wanders RJ, Vreken P, Aviram M (1998) Plasmalogen phospholipids are involved in HDL-mediated cholesterol efflux: insights from investigations with plasmalogen-deficient cells. Biochem Biophys Res Commun 250:369–373

    Article  CAS  PubMed  Google Scholar 

  • Marathe GK, Pandit C, Lakshmikanth CL, Chaithra VH, Jacob SP, D’Souza CJ (2014) To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase. J Lipid Res 55:1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricic I, Girardi E, Zajonc DM, Kumar V (2014) Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. J Immunol 193:4580–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  CAS  PubMed  Google Scholar 

  • Melian A, Geng YJ, Sukhova GK, Libby P, Porcelli SA (1999) CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am J Pathol 155:775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira-Teixeira L, Resende M, Coffre M, Devergne O, Herbeuval JP, Hermine O, Schneider E, Rogge L, Ruemmele FM, Dy M, Cordeiro-da-Silva A, Leite-de-Moraes MC (2011) Proinflammatory environment dictates the IL-17-producing capacity of human invariant NKT cells. J Immunol 186:5758–5765

    Article  CAS  PubMed  Google Scholar 

  • Morita CT, Jin C, Sarikonda G, Wang H (2007) Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215:59–76

    Article  CAS  PubMed  Google Scholar 

  • Munn NJ, Arnio E, Liu D, Zoeller RA, Liscum L (2003) Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J Lipid Res 44:182–192

    Article  CAS  PubMed  Google Scholar 

  • Nakai Y, Iwabuchi K, Fujii S, Ishimori N, Dashtsoodol N, Watano K, Mishima T, Iwabuchi C, Tanaka S, Bezbradica JS, Nakayama T, Taniguchi M, Miyake S, Yamamura T, Kitabatake A, Joyce S, Van Kaer L, Onoe K (2004) Natural killer T cells accelerate atherogenesis in mice. Blood 104:2051–2059

    Article  CAS  PubMed  Google Scholar 

  • Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34:724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paduraru C, Bezbradica JS, Kunte A, Kelly R, Shayman JA, Veerapen N, Cox LR, Besra GS, Cresswell P (2013) Role for lysosomal phospholipase A2 in iNKT cell-mediated CD1d recognition. Proc Natl Acad Sci U S A 110:5097–5102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Meehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J (2013) Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun 4:2142

    PubMed  Google Scholar 

  • Porcelli SA, Modlin RL (1999) The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 17:297–329

    Article  CAS  PubMed  Google Scholar 

  • Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360:593–597

    Article  CAS  PubMed  Google Scholar 

  • Porcelli S, Gerdes D, Fertig AM, Balk SP (1996) Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4- and heterogeneous with respect to TCR beta expression. Hum Immunol 48:63–67

    Article  CAS  PubMed  Google Scholar 

  • Porubsky S, Speak AO, Luckow B, Cerundolo V, Platt FM, Grone HJ (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci U S A 104:5977–5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puan KJ, Jin C, Wang H, Sarikonda G, Raker AM, Lee HK, Samuelson MI, Marker-Hermann E, Pasa-Tolic L, Nieves E, Giner JL, Kuzuyama T, Morita CT (2007) Preferential recognition of a microbial metabolite by human Vgamma2Vdelta2 T cells. Int Immunol 19:657–673

    Article  CAS  PubMed  Google Scholar 

  • Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, Bhati M, Kostenko L, Bharadwaj M, Meehan B, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J (2012) Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J Exp Med 209:761–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DA, Chen HC, Price AJ, Keeble AH, Davey MS, James LC, Eberl M, Trowsdale J (2015) Activation of human gammadelta T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J Immunol 194:2390–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riano F, Karunakaran MM, Starick L, Li J, Scholz CJ, Kunzmann V, Olive D, Amslinger S, Herrmann T (2014) Vgamma9Vdelta2 TCR-activation by phosphorylated antigens requires butyrophilin 3 A1 (BTN3A1) and additional genes on human chromosome 6. Eur J Immunol 44:2571–2576

    Article  CAS  PubMed  Google Scholar 

  • Riederer M, Kofeler H, Lechleitner M, Tritscher M, Frank S (2012) Impact of endothelial lipase on cellular lipid composition. Biochim Biophys Acta 1821:1003–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers L, Burchat S, Gage J, Hasu M, Thabet M, Willcox L, Ramsamy TA, Whitman SC (2008) Deficiency of invariant V alpha 14 natural killer T cells decreases atherosclerosis in LDL receptor null mice. Cardiovasc Res 78:167–174

    Article  CAS  PubMed  Google Scholar 

  • Ronchi F, Falcone M (2008) Immune regulation by invariant NKT cells in autoimmunity. Front Biosci 13:4827–4837

    Article  CAS  PubMed  Google Scholar 

  • Sanderson JP, Brennan PJ, Mansour S, Matulis G, Patel O, Lissin N, Godfrey DI, Kawahara K, Zahringer U, Rossjohn J, Brenner MB, Gadola SD (2013) CD1d protein structure determines species-selective antigenicity of isoglobotrihexosylceramide (iGb3) to invariant NKT cells. Eur J Immunol 43:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandstrom A, Peigne CM, Leger A, Crooks JE, Konczak F, Gesnel MC, Breathnach R, Bonneville M, Scotet E, Adams EJ (2014) The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity 40:490–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serna J, Garcia-Seisdedos D, Alcazar A, Lasuncion MA, Busto R, Pastor O (2015) Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry. Chem Phys Lipids 189:7–18

    Article  CAS  PubMed  Google Scholar 

  • Sevastou I, Kaffe E, Mouratis MA, Aidinis V (2013) Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim Biophys Acta 1831:42–60

    Article  CAS  PubMed  Google Scholar 

  • Silva IT, Mello AP, Damasceno NR (2011) Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)): a review. Lipids Health Dis 10:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley ST, Kaplan MH, Grusby MJ (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275:977–979

    Article  CAS  PubMed  Google Scholar 

  • Snyder F (1988) Metabolism of platelet activating factor and related ether lipids: enzymatic pathways, subcellular sites, regulation, and membrane processing. Prog Clin Biol Res 282:57–72

    CAS  PubMed  Google Scholar 

  • Snyder F, Fitzgerald V, Blank ML (1996) Biosynthesis of platelet-activating factor and enzyme inhibitors. Adv Exp Med and Biol 416:5–10

    Article  CAS  Google Scholar 

  • Spada FM, Koezuka Y, Porcelli SA (1998) CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 188:1529–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafforini DM, Tjoelker LW, McCormick SP, Vaitkus D, McIntyre TM, Gray PW, Young SG, Prescott SM (1999) Molecular basis of the interaction between plasma platelet-activating factor acetylhydrolase and low density lipoprotein. J Biol Chem 274:7018–7024

    Article  CAS  PubMed  Google Scholar 

  • Stanic AK, Shashidharamurthy R, Bezbradica JS, Matsuki N, Yoshimura Y, Miyake S, Choi EY, Schell TD, Van Kaer L, Tevethia SS, Roopenian DC, Yamamura T, Joyce S (2003) Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural TCR. J Immunol 171:4539–4551

    Article  CAS  PubMed  Google Scholar 

  • Steinbrecher UP, Pritchard PH (1989) Hydrolysis of phosphatidylcholine during LDL oxidation is mediated by platelet-activating factor acetylhydrolase. J Lipid Res 30:305–315

    CAS  PubMed  Google Scholar 

  • Subramanian S, Turner MS, Ding Y, Goodspeed L, Wang S, Buckner JH, O’Brien K, Getz GS, Reardon CA, Chait A (2013) Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice. J Lipid Res 54:2831–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Morita CT, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375:155–158

    Article  CAS  PubMed  Google Scholar 

  • Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK, Barr KA, Meng F, Luster AD, Bendelac A (2011) PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 208:1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To K, Agrotis A, Besra G, Bobik A, Toh BH (2009) NKT cell subsets mediate differential proatherogenic effects in ApoE−/− mice. Arterioscler Thromb Vasc Biol 29:671–677

    Article  CAS  PubMed  Google Scholar 

  • Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169

    Article  CAS  PubMed  Google Scholar 

  • Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, Hansson GK, Berne GP (2004) CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 199:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 5:405–417

    Article  CAS  PubMed  Google Scholar 

  • van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn I, Moody DB (2015) Donor unrestricted T cells: a shared human T cell response. J Immunol 195:1927–1932

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB (2015) Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol 15:643–654

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn I, van Berlo T, Hilmenyuk T, Cheng TY, Wolf BJ, Tatituri RV, Uldrich AP, Napolitani G, Cerundolo V, Altman JD, Willemsen P, Huang S, Rossjohn J, Besra GS, Brenner MB, Godfrey DI, Moody DB (2016) Human autoreactive T cells recognize CD1b and phospholipids. Proc Natl Acad Sci U S A 113:380–385

    Article  PubMed  CAS  Google Scholar 

  • VanderLaan PA, Reardon CA, Sagiv Y, Blachowicz L, Lukens J, Nissenbaum M, Wang CR, Getz GS (2007) Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis. Am J Pathol 170:1100–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S, Beddoe T, Theodossis A, Williams NK, Gostick E, Price DA, Soudamini DU, Voon KK, Olivo M, Rossjohn J, Mori L, De Libero G (2013) Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol 14:908–916

    Article  CAS  PubMed  Google Scholar 

  • Vincent MS, Xiong X, Grant EP, Peng W, Brenner MB (2005) CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J Immunol 175:6344–6351

    Article  CAS  PubMed  Google Scholar 

  • Voloshyna I, Littlefield MJ, Reiss AB (2014) Atherosclerosis and interferon-gamma: new insights and therapeutic targets. Trends Cardiovasc Med 24:45–51

    Article  CAS  PubMed  Google Scholar 

  • Wallace KL, Marshall MA, Ramos SI, Lannigan JA, Field JJ, Strieter RM, Linden J (2009) NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood 114:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Morita CT (2015) Sensor function for butyrophilin 3A1 in prenyl pyrophosphate stimulation of human Vgamma2Vdelta2 T cells. J Immunol 195:4583–4594

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen X, Rodenkirch L, Simonson W, Wernimont S, Ndonye RM, Veerapen N, Gibson D, Howell AR, Besra GS, Painter GF, Huttenlocher A, Gumperz JE (2008) Natural killer T-cell autoreactivity leads to a specialized activation state. Blood 112:4128–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sarikonda G, Puan KJ, Tanaka Y, Feng J, Giner JL, Cao R, Monkkonen J, Oldfield E, Morita CT (2011) Indirect stimulation of human Vgamma2Vdelta2 T cells through alterations in isoprenoid metabolism. J Immunol 187:5099–5113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bishop KA, Hegde S, Rodenkirch LA, Pike JW, Gumperz JE (2012) Human invariant natural killer T cells acquire transient innate responsiveness via histone H4 acetylation induced by weak TCR stimulation. J Exp Med 209:987–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Henry O, Distefano MD, Wang YC, Raikkonen J, Monkkonen J, Tanaka Y, Morita CT (2013) Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vgamma2Vdelta2 T cells. J Immunol 191:1029–1042

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Erl W, Weber KS, Weber PC (1999) Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interactions. Clin Chem Lab Med 37:243–251

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Kubes P (2013) Imaging natural killer T cells in action. Immunol Cell Biol 91:304–310

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Van Kaer L (2009) Natural killer T cells and autoimmune disease. Curr Mol Med 9:4–14

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE (1995) Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 270:1845–1847

    Article  CAS  PubMed  Google Scholar 

  • Young DC, Moody DB (2006) T-cell recognition of glycolipids presented by CD1 proteins. Glycobiology 16:103R–112R

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Kang SJ, Evans JE, Cresswell P (2009) Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J Immunol 182:4784–4791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajonc DM, Kronenberg M (2009) Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells. Immunol Rev 230:188–200

    Article  CAS  PubMed  Google Scholar 

  • Zajonc DM, Savage PB, Bendelac A, Wilson IA, Teyton L (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Valpha14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377:1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng MY, Pham D, Bagaitkar J, Liu J, Otero K, Shan M, Wynn TA, Brombacher F, Brutkiewicz RR, Kaplan MH, Dinauer MC (2013) An efferocytosis-induced, IL-4-dependent macrophage-iNKT cell circuit suppresses sterile inflammation and is defective in murine CGD. Blood 121:3473–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny E. Gumperz.

Additional information

This article is published in the Special Issue CD1, MR1, NKT, and MAIT: Evolution and Origins of Non-peptidic Antigen Recognition by T lymphocytes with Guest Editor Dr. Dirk Zajonc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felley, L., Gumperz, J.E. Are human iNKT cells keeping tabs on lipidome perturbations triggered by oxidative stress in the blood?. Immunogenetics 68, 611–622 (2016). https://doi.org/10.1007/s00251-016-0936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0936-8

Keywords

Navigation