Skip to main content

Advertisement

Log in

Immunotherapeutic strategies targeting natural killer T cell responses in cancer

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelmegeed H, Nakamura T, Harashima H (2016) In vivo inverse correlation in the activation of natural killer T cells through dual-signal stimulation via a combination of α-galactosylceramide-loaded liposomes and interleukin-12. J Pharm Sci 105:250–256

    Article  CAS  PubMed  Google Scholar 

  • Adachi Y, Koseki H, Zijlstra M, Taniguchi M (1995) Positive selection of invariant V alpha 14+ T cells by non-major histocompatibility complex-encoded class I-like molecules expressed on bone marrow-derived cells. Proc Natl Acad Sci USA 92:1200–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosino E, Berzofsky JA, Terabe M (2008) Regulation of tumor immunity: the role of NKT cells. Expert Opin Biol Ther 8:725–734

    Article  CAS  PubMed  Google Scholar 

  • Ambrosino E, Terabe M, Halder RC, Peng J, Takaku S, Miyake S, Yamamura T, Kumar V, Berzofsky JA (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179:5126–5136

    Article  CAS  PubMed  Google Scholar 

  • Anastasiadis A, Kotsianidis I, Papadopoulos V, Spanoudakis E, Margaritis D, Christoforidou A, Gouliamtzi S, Tsatalas C (2014) CD1d expression as a prognostic marker for chronic lymphocytic leukemia. Leuk Lymphoma 55:320–325

    Article  CAS  PubMed  Google Scholar 

  • Anderson RJ, Tang C-W, Daniels NJ, Compton BJ, Hayman CM, Johnston KA, Knight DA, Gasser O, Poyntz HC, Ferguson PM, Larsen DS, Ronchese F, Painter GF, Hermans IF (2014) A self-adjuvanting vaccine induces cytotoxic T lymphocytes that suppress allergy. Nat Chem Biol 10:943–949

    Article  CAS  PubMed  Google Scholar 

  • Asgharzadeh S, Salo JA, Ji L, Oberthuer A, Fischer M, Berthold F, Hadjidaniel M, Liu CW, Metelitsa LS, Pique-Regi R, Wakamatsu P, Villablanca JG, Kreissman SG, Matthay KK, Shimada H, London WB, Sposto R, Seeger RC (2012) Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 30:3525–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspeslagh S, Li Y, Yu ED, Pauwels N, Trappeniers M, Girardi E, Decruy T, Van Beneden K, Venken K, Drennan M, Leybaert L, Wang J, Franck RW, Van Calenbergh S, Zajonc DM, Elewaut D (2011) Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J 30:2294–2305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aspeslagh S, Nemčovič M, Pauwels N, Venken K, Wang J, Van Calenbergh S, Zajonc DM, Elewaut D (2013) Enhanced TCR footprint by a novel glycolipid increases NKT-dependent tumor protection. J Immunol 191:2916–2925

    Article  CAS  PubMed  Google Scholar 

  • Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520

    CAS  PubMed  Google Scholar 

  • Bagnara D, Ibatici A, Corselli M, Sessarego N, Tenca C, De Santanna A, Mazzarello A, Daga A, Corvo R, De Rossi G, Frassoni F, Ciccone E, Fais F (2009) Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms. Haematologica 94:967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, Zahner S, Illarionov PA, Wen X, Li M, Yuan W, Porcelli SA, Besra GS, Zajonc DM, Kronenberg M (2015) A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production. J Immunol 195:924–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650

    CAS  PubMed  Google Scholar 

  • Casorati G, de Lalla C, Dellabona P (2012) Invariant natural killer T cells reconstitution and the control of leukemia relapse in pediatric haploidentical hematopoietic stem cell transplantation. Oncoimmunology 1:355–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2008) Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112:1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD, Jagannath S, Dhodapkar MV (2006) Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 108:618–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, Dhodapkar MV (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Qin H, Kang CY, Kim S, Kwak LW, Dong C (2007) An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood 110:2013–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, Godfrey DI (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4–NK1.1–NKT cell population. Proc Natl Acad Sci 105:11287–11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corgnac S, Perret R, Derré L, Zhang L, Stirnemann K, Zauderer M, Speiser DE, Mach J-P, Romero P, Donda A (2012) CD1d-antibody fusion proteins target iNKT cells to the tumor and trigger long-term therapeutic responses. Cancer Immunol Immunother 62:747–760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croudace JE, Curbishley SM, Mura M, Willcox CR, Illarionov PA, Besra GS, Adams DH, Lammas DA (2008) Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide. BMC Immunol 9:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crough T, Purdie DM, Okai M, Maksoud A, Nieda M, Nicol AJ (2004) Modulation of human V[alpha]24 + V[beta]11+ NKT cells by age, malignancy and conventional anticancer therapies. Br J Cancer 91:1880–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, Godfrey DI, Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for V14 NKT cells in IL-12-mediated rejection of tumors. Science 278

  • de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM, Paganoni AM, Maccario R, Di Cesare-Merlone A, Zecca M, Locatelli F, Dellabona P, Casorati G (2011) Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state. J Immunol 186:4490–4499

    Article  PubMed  CAS  Google Scholar 

  • Dellabona P, Casorati G, de Lalla C, Montagna D, Locatelli F (2011) On the use of donor-derived iNKT cells for adoptive immunotherapy to prevent leukemia recurrence in pediatric recipients of HLA haploidentical HSCT for hematological malignancies. Clin Immunol 140:152–159

    Article  CAS  PubMed  Google Scholar 

  • Dhodapkar MV, Richter J (2011) Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol 140:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dölen Y, Kreutz M, Gileadi U, Tel J, Vasaturo A, van Dinther EAW, van Hout-Kuijer MA, Cerundolo V, Figdor CG (2016) Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses. OncoImmunology 5:e1068493

    Article  PubMed  CAS  Google Scholar 

  • Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985–992

  • Fais F, Tenca C, Cimino G, Coletti V, Zanardi S, Bagnara D, Saverino D, Zarcone D, De Rossi G, Ciccone E, Grossi CE (2005) CD1d expression on B-precursor acute lymphoblastic leukemia subsets with poor prognosis. Leukemia 19:551–556

    CAS  PubMed  Google Scholar 

  • Fowlkes BJ, Kruisbeek AM, Ton-That H, Weston MA, Coligan JE, Schwartz RH, Pardoll DM (1987) A novel population of T-cell receptor ab-bearing thymocytes which predominantly expresses a single Vb gene family. Nature 329:251–254

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Shimizu K, Klimek V, Geller MD, Nimer SD, Dhodapkar MV (2003a) Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol 122:617–622

    Article  PubMed  Google Scholar 

  • Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003b) Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S-I, Goto A, Shimizu K (2009) Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity. Blood 113:4262–4272

    Article  CAS  PubMed  Google Scholar 

  • Fujii S-I, Shimizu K, Hemmi H, Steinman RM (2007) Innate V14+ natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev 220:183–198

    Article  CAS  PubMed  Google Scholar 

  • Fujii S-I, Shimizu K, Okamoto Y, Kunii N, Nakayama T, Motohashi S, Taniguchi M (2013) NKT cells as an ideal anti-tumor immunotherapeutic. Front Immunol 4:409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, Von Blomberg BM, Scheper RJ, Van Der Vliet HJ, Van Den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM (2002) A phase I study of the natural killer T-cell ligand a- galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709

    CAS  PubMed  Google Scholar 

  • Gibbins JD (2014) An autologous leukemia cell vaccine prevents murine acute leukemia relapse after cytarabine treatment. Blood 124

  • Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206

    Article  CAS  PubMed  Google Scholar 

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Dong A, Xing C, Lin X, Pan X, Lin Y, Zhu B, He M, Yao RX (2014) CD1d levels in peripheral blood of patients with acute myeloid leukemia and acute lymphoblastic leukemia. Oncol Lett 8:825–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi K, Takahashi T, Nakahara F, Matsumoto A, Kurokawa M, Ogawa S, Oda H, Hirai H, Chiba S (2006) CD1d expression level in tumor cells is an important determinant for anti-tumor immunity by natural killer T cells. Leuk Lymphoma 47:2218–2223

    Article  CAS  PubMed  Google Scholar 

  • Harty JT, Badovinac VP (2008) Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8:107–119

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H, Van Kaer L, Saiki I, Okumura K (2001) Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol 166:6012–6018

    Article  CAS  PubMed  Google Scholar 

  • Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E, Gao X, Guo L, Yvon E, Hicks J, Liu H, Dotti G, Metelitsa LS (2014) Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124:2824–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Masri SH, Shepherd D, Farrand KJ, Salio M, Cerundolo V (2007) Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol 178:2721–2729

    Article  CAS  PubMed  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171:5140–5147

    Article  CAS  PubMed  Google Scholar 

  • Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL, Campana D (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18:676–684

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Kanno M, Kimoto H, Shigemoto K, Yamamoto S, Taniguchi M (1986) Sequence and expression of transcripts of the T-cell antigen receptor alpha-chain gene in a functional, antigen-specific suppressor-T-cell hybridoma. Proc Natl Acad Sci USA 83:8708–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, Fujisawa T (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917

    Article  CAS  PubMed  Google Scholar 

  • Izhak L, Ambrosino E, Kato S, Parish ST, O’Konek JJ, Weber H, Xia Z, Venzon D, Berzofsky JA, Terabe M (2013) Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res 73:1514–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Terabe M, Berzofsky JA (2014) Liver sulfatide-reactive type II NKT cells recognize endogenous phospholipids. J ImmunoTher Cancer 2:P215

    Article  PubMed Central  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, Akutsu Y, Motohashi S, Iizasa T, Endo H, Fujisawa T, Shinkai H, Taniguchi M (1999) Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res 59:5102–5105

    CAS  PubMed  Google Scholar 

  • Kitayama S, Zhang R, Liu T-Y, Ueda N, Iriguchi S, Yasui Y, Kawai Y, Tatsumi M, Hirai N, Mizoro Y, Iwama T, Watanabe A, Nakanishi M, Kuzushima K, Uemura Y, Kaneko S (2016) Cellular adjuvant properties, direct cytotoxicity of Re-differentiated Vα24 invariant NKT-like cells from human induced pluripotent stem cells. Stem Cell Rep 6:213–227

    Article  CAS  Google Scholar 

  • Kmieciak M, Basu D, Payne KK, Toor A, Yacoub A, Wang XY, Smith L, Bear HD, Manjili MH (2011) Activated NKT cells and NK cells render T cells resistant to myeloid-derived suppressor cells and result in an effective adoptive cellular therapy against breast cancer in the FVBN202 transgenic mouse. J Immunol 187:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko H-J, Lee J-M, Kim Y-J, Kim Y-S, Lee K-A, Kang C-Y (2009a) Immunosuppressive myeloid-derived suppressor cells can Be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182:1818–1828

    Article  CAS  PubMed  Google Scholar 

  • Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA, Kang CY (2009b) Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182:1818–1828

    Article  CAS  PubMed  Google Scholar 

  • Ko S-F, Yip H-K, Zhen Y-Y, Lee C-C, Lee C-C, Huang C-C, Ng S-H, Lin J-W (2015) Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells Int 2015:11

    Article  Google Scholar 

  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontermann RE, Brinkmann U (2015) Bispecific antibodies. Drug Discov Today 20:838–847

    Article  CAS  PubMed  Google Scholar 

  • Koseki H, Imai K, Nakayama F, Sado T, Moriwaki K, Taniguchi M (1990) Homogenous junctional sequence of the V14+ T-cell antigen receptor alpha chain expanded in unprimed mice. Proc Natl Acad Sci USA 87:5248–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lantz O, Bendelac A (1994) An invariant T cell receptor a chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J Exp Med 180:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY (2012) The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer 131:741–751

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun W, Subrahmanyam PB, Page C, Younger KM, Tiper IV, Frieman M, Kimball AS, Webb TJ (2014a) NKT cell responses to B cell lymphoma. Med Sci (Basel) 2:82–97

    CAS  Google Scholar 

  • Li X, Chen G, Garcia-Navarro R, Franck RW, Tsuji M (2009) Identification of C-glycoside analogues that display a potent biological activity against murine and human invariant natural killer T cells. Immunology 127:216–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong C-H, Ho DD, Tsuji M (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci 107:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Luo H, Li C, Huo X, Yan C, Huang X, Al-Haddawi M, Mathavan S, Gong Z (2014b) Transcriptomic analysis of a transgenic zebrafish hepatocellular carcinoma model reveals a prominent role of immune responses in tumour progression and regression. Int J Cancer 135:1564–1573

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Song L, Wei J, Courtney AN, Gao X, Marinova E, Guo L, Heczey A, Asgharzadeh S, Kim E, Dotti G, Metelitsa LS (2012) IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest 122:2221–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Idoyaga J, Charalambous A, S-I F, Bonito A, Mordoh J, Wainstok R, Bai X-F, Liu Y, Steinman RM (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202:1507–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loffler A, Kufer P, Lutterbuse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmuller G, Dorken B, Bargou RC (2000) A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95:2098–2103

    CAS  PubMed  Google Scholar 

  • Macho-Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, Trottein F, Faveeuw C (2014) Targeted delivery of α-galactosylceramide to CD8α + Dendritic cells optimizes type I NKT cell-based antitumor responses. J Immunol 193:961–969

    Article  CAS  PubMed  Google Scholar 

  • Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20:70–75

    Article  CAS  PubMed  Google Scholar 

  • Marrero I, Ware R, Kumar V (2015) Type II NKT cells in inflammation, autoimmunity, microbial immunity and cancer. Front Immunol 6

  • Mattarollo SR, Smyth MJ (2013) NKT cell adjuvants in therapeutic vaccines against hematological cancers. Oncoimmunology 2:e22615

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen-Smith RM, Salio M, Cerundolo V (2015) The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol Res 3:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC (2003) Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17:1068–1077

    Article  CAS  PubMed  Google Scholar 

  • Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, Asgharzadeh S, Groshen S, Wilson SB, Seeger RC (2004) Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204:995–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, Molenkamp BG, Langendijk JA, Leemans CR, von Blomberg BM, Scheper RJ, van den Eertwegh AJ (2005) Peripheral blood IFN-gamma-secreting Valpha24 + Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 116:87–93

    Article  CAS  PubMed  Google Scholar 

  • Moreno M, Mol BM, Mensdorff-Pouilly SV, Verheijen RHM, von Blomberg BME, van den Eertwegh AJM, Scheper RJ, Bontkes HJ (2008) Toll-like receptor agonists and invariant natural killer T-cells enhance antibody-dependent cell-mediated cytotoxicity (ADCC). Cancer Lett 272:70–76

    Article  CAS  PubMed  Google Scholar 

  • Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL, Bofinger HM, Burman AC, Olver SD, Kienzle N, Porcelli SA, Pellicci DG, Godfrey DI, Smyth MJ, Hill GR (2005) NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 115:3093–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, Shimizu N, Horiguchi S, Okamoto Y, Fujii S, Taniguchi M, Fujisawa T, Nakayama T (2006) A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12:6079–6086

    Article  CAS  PubMed  Google Scholar 

  • Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, Hanaoka H, Shimizu N, Suzuki M, Yoshino I, Taniguchi M, Fujisawa T, Nakayama T (2009) A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182:2492–2501

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa R, Nagafune I, Tazunoki Y, Ehara H, Tomura H, Iijima R, Motoki K, Kamishohara M, Seki S (2001) Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by a-galactosylceramide in mice. J Immunol 166:6578–6584

    Article  CAS  PubMed  Google Scholar 

  • Nicol AJ, Tazbirkova A, Nieda M (2011) Comparison of clinical and immunological effects of intravenous and intradermal administration of α-GalactosylCeramide (KRN7000)-pulsed dendritic cells. Clin Cancer Res 17:5140–5151

    Article  CAS  PubMed  Google Scholar 

  • Nieda M, Nicol A, Koezuka Y, Kikuchi A, Lapteva N, Tanaka Y, Tokunaga K, Suzuki K, Kayagaki N, Yagita H, Hirai H, Juji T (2001) TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 97:2067–2074

    Article  CAS  PubMed  Google Scholar 

  • Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ (2004) Therapeutic activation of Valpha24 + Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389

    Article  CAS  PubMed  Google Scholar 

  • O’Konek JJ, Illarionov P, Khursigara DS, Ambrosino E, Izhak L, Castillo BF II, Raju R, Khalili M, Kim H-Y, Howell AR, Besra GS, Porcelli SA, Berzofsky JA, Terabe M (2011) Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 121:683–694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Konek JJ, Kato S, Takao S, Izhak L, Xia Z, Illarionov P, Besra GS, Terabe M, Berzofsky JA (2013) Beta-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res 19:4404–4411

    Article  PubMed  CAS  Google Scholar 

  • Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat Med 9:619–624

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Morisaki T, Baba E, Kuga H, Kuroki H, Matsumoto K, Tanaka M, Katano M (2002) Dysfunctional and short-lived subsets in monocyte-derived dendritic cells from patients with advanced cancer. Clin Immunol 105:286–295

    Article  CAS  PubMed  Google Scholar 

  • Ortaldo JR, Young HA, Winkler-Pickett RT, Bere EW Jr, Murphy WJ, Wiltrout RH (2004) Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J Immunol 172:943–953

    Article  CAS  PubMed  Google Scholar 

  • Osada T, Morse MA, Lyerly HK, Clay TM (2005) Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol 17:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, Sheehan KCF, Capron M, Ryffel B, Faveeuw C, Leite de Moraes M, Platt F, Trottein F (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27:597–609

    Article  CAS  PubMed  Google Scholar 

  • Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Kaer LV (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulos CM, Suhoski MM, Plesa G, Jiang T, Basu S, Golovina TN, Jiang S, Aqui NA, Powell DJ Jr, Levine BL, Carroll RG, Riley JL, June CH (2008) Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunol Res 42:182–196

    Article  PubMed  Google Scholar 

  • Payne KK, Keim RC, Graham L, Idowu MO, Wan W, Wang XY, Toor AA, Bear HD, Manjili MH (2016) Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells. J Leukoc Biol

  • Payne KK, Zoon CK, Wan W, Marlar K, Keim RC, Kenari MN, Kazim AL, Bear HD, Manjili MH (2013) Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells. Breast Cancer Res Treat 142:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai AB, George TI, Dutt S, Teo P, Strober S (2007) Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol 178:6242–6251

    Article  CAS  PubMed  Google Scholar 

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raso V, Griffin T (1981) Hybrid antibodies with dual specificity for the delivery of ricin to immunoglobulin-bearing target cells. Cancer Res 41:2073–2078

    CAS  PubMed  Google Scholar 

  • Rauta PR, Nayak B, Das S (2012) Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 148:23–33

    Article  CAS  PubMed  Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR (2008) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Van Kaer L, Brutkiewicz RR (2006) Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer 118:3045–3053

    Article  CAS  PubMed  Google Scholar 

  • Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, Miesowicz F, Dhodapkar KM, Dhodapkar MV (2013) Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert J, Edholm E-S (2014) A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics 66:513–523

    Article  CAS  PubMed  Google Scholar 

  • Robertson FC, Berzofsky JA, Terabe M (2014) NKT cell networks in the regulation of tumor immunity. Front Immunol 5:543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al. (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  CAS  PubMed  Google Scholar 

  • Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffold C, Kornacker M, Scheffold YC, Contag CH, Negrin RS (2002) Visualization of effective tumor targeting by CD8+ natural killer T cells redirected with bispecific antibody F(ab’)(2)HER2xCD3. Cancer Res 62:5785–5791

    CAS  PubMed  Google Scholar 

  • Schlereth B, Quadt C, Dreier T, Kufer P, Lorenczewski G, Prang N, Brandl C, Lippold S, Cobb K, Brasky K, Leo E, Bargou R, Murthy K, Baeuerle PA (2006) T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol Immunother 55:503–514

    Article  CAS  PubMed  Google Scholar 

  • Schmieg J, Yang G, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-galactosylceramide. J Exp Med 198:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiders FL, Scheper RJ, von Blomberg BME, Woltman AM, Janssen HLA, van den Eertwegh AJM, Verheul HMW, de Gruijl TD, van der Vliet HJ (2011) Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol 140:130–141

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S (2007) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204:2641–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiratsuchi T, Schneck J, Kawamura A, Tsuji M (2009) Human CD1 dimeric proteins as indispensable tools for research on CD1-binding lipids and CD1-restricted T cells. J Immunol Methods 345:49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn S, Tiper I, Japp E, Sun W, Tkaczuk K, Webb TJ (2014) Development of a qPCR method to rapidly assess the function of NKT cells. J Immunol Methods 407:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, Metelitsa LS (2009) Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119:1524–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriram V, Cho S, Li P, O’Donnell PW, Dunn C, Hayakawa K, Blum JS, Brutkiewicz RR (2002) Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell lymphoma by natural killer T (NKT) cells. Proc Natl Acad Sci USA 99:8197–8202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirnemann K, Romero JF, Baldi L, Robert B, Cesson V, Besra GS, Zauderer M, Wurm F, Corradin G, Mach J-P, MacDonald HR, Donda A (2008) Sustained activation and tumor targeting of NKT cells using a CD1d–anti-HER2–scFv fusion protein induce antitumor effects in mice. J Clin Invest 118:994–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Wang Y, East JE, Kimball AS, Tkaczuk K, Kesmodel S, Strome SE, Webb TJ (2015) Invariant natural killer T cells generated from human adult hematopoietic stem-progenitor cells are poly-functional. Cytokine 72:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, Imamura M (2005) Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11:7322–7327

    Article  CAS  PubMed  Google Scholar 

  • Tahara H (1995) Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. Immunology 6466–6474

  • Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA (2001) Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 167:4046–4050

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4:1164–1165

    Article  CAS  PubMed  Google Scholar 

  • Teng MW, Sharkey J, McLaughlin NM, Exley MA, Smyth MJ (2009) CD1d-based combination therapy eradicates established tumors in mice. J Immunol 183:1911–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA (2005) A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima A, Watarai H, Inoue S, Sekine E, Nakagawa R, Hase K, Iwamura C, Nakajima H, Nakayama T, Taniguchi M (2008) A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 205:2727–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa P, Zhang G, Xia C, Gelbard A, Overwijk WW, Liu C, Hwu P, Chang DZ, Courtney A, Sastry JK, Wang PG, Li C, Zhou D (2009) Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine 27:3484–3488

    Article  CAS  PubMed  Google Scholar 

  • Topp MS, Gokbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC, Dombret H, Fielding AK, Heffner L, Larson RA, Neumann S, Foa R, Litzow M, Ribera JM, Rambaldi A, Schiller G, Bruggemann M, Horst HA, Holland C, Jia C, Maniar T, Huber B, Nagorsen D, Forman SJ, Kantarjian HM (2015) Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 16:57–66

    Article  CAS  PubMed  Google Scholar 

  • Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, Viardot A, Marks R, Diedrich H, Faul C, Reichle A, Horst HA, Bruggemann M, Wessiepe D, Holland C, Alekar S, Mergen N, Einsele H, Hoelzer D, Bargou RC (2014) Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 32:4134–4140

    Article  CAS  PubMed  Google Scholar 

  • Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M (1999) Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with a-galactosylceramide. J Immunol 163:2387–2391

    CAS  PubMed  Google Scholar 

  • Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska K, Song CW, Wick MR, Myers DE, Waddick K, Ledbetter JA (1988) Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71:13–29

    CAS  PubMed  Google Scholar 

  • Uemura Y, Liu TY, Narita Y, Suzuki M, Nakatsuka R, Araki T, Matsumoto M, Iwai LK, Hirosawa N, Matsuoka Y, Murakami M, Kimura T, Hase M, Kohno H, Sasaki Y, Ichihara Y, Ishihara O, Kikuchi H, Sakamoto Y, Jiao SC, Senju S, Sonoda Y (2009) Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Valpha24 invariant NKT cells. J Immunol 183:201–208

    Article  CAS  PubMed  Google Scholar 

  • Uldrich AP, Crowe NY, Kyparissoudis K, Pellicci DG, Zhan Y, Lew AM, Bouillet P, Strasser A, Smyth MJ, Godfrey DI (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and Hyporesponsiveness to further antigenic challenge. J Immunol 175:3092–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12:239–252

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cheng L, Wondimu Z, Swain M, Santamaria P, Yang Y (2009) Cutting edge: CD28 engagement releases antigen-activated invariant NKT cells from the inhibitory effects of PD-1. J Immunol 182:6644–6647

    Article  CAS  PubMed  Google Scholar 

  • Watarai H, Fujii S-i, Yamada D, Rybouchkin A, Sakata S, Nagata Y, Iida-Kobayashi M, Sekine-Kondo E, Shimizu K, Shozaki Y, Sharif J, Matsuda M, Mochiduki S, Hasegawa T, Kitahara G, Endo TA, Toyoda T, Ohara O, Harigaya K-i, Koseki H, Taniguchi M (2010a) Murine induced pluripotent stem cells can be derived from and differentiate into natural killer T cells. J Clin Invest 120:2610–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watarai H, Rybouchkin A, Hongo N, Nagata Y, Sakata S, Sekine E, Dashtsoodol N, Tashiro T, Fujii S-I, Shimizu K, Mori K, Masuda K, Kawamoto H, Koseki H, Taniguchi M (2010b) Generation of functional NKT cells in vitro from embryonic stem cells bearing rearranged invariant Vα14-Jα18 TCRα gene. Blood 115:230–237

    Article  CAS  PubMed  Google Scholar 

  • Watarai H, Sekine-Kondo E, Shigeura T, Motomura Y, Yasuda T, Satoh R, Yoshida H, Kubo M, Kawamoto H, Koseki H, Taniguchi M (2012) Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biol 10:e1001255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb TJ, Bieler JG, Schneck JP, Oelke M (2009) Ex vivo induction and expansion of natural killer T cells by CD1d1-Ig coated artificial antigen presenting cells. J Immunol Methods 346:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb TJ, Li X, Giuntoli RL 2nd, Lopez PH, Heuser C, Schnaar RL, Tsuji M, Kurts C, Oelke M, Schneck JP (2012) Molecular identification of GD3 as a suppressor of the innate immune response in ovarian cancer. Cancer Res 72:3744–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S-Y, Jung Y-J, Ryu K-H, Park H-Y, Kie J-H, Im S-A, Chung W-S, Han H-S, Seoh J-Y (2003) In vitro differentiation of natural killer T cells from human cord blood CD34+ cells. Br J Haematol 121:148–156

    Article  PubMed  Google Scholar 

  • Wu D, Xing GW, Poles MA, Horowitz A, Kinjo Y, Sullivan B, Bodmer-Narkevitch V, Plettenburg O, Kronenberg M, Tsuji M, Ho DD, Wong CH (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci USA 102:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K (2006) Hyporesponsiveness to natural killer T-cell ligand alpha-galactosylceramide in cancer-bearing state mediated by CD11b + Gr-1+ cells producing nitric oxide. Cancer Res 66:11441–11446

    Article  CAS  PubMed  Google Scholar 

  • Yen J, White RM, Stemple DL (2014) Zebrafish models of cancer: progress and future challenges. Curr Opin Genet Dev 24:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaini J, Andarini S, Tahara M, Saijo Y, Ishii N, Kawakami K, Taniguchi M, Sugamura K, Nukiwa T, Kikuchi T (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest 117:3330–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajonc DM, Girardi E (2015) Recognition of microbial glycolipids by Natural Killer T cells. Front Immunol 6

Download references

Acknowledgments

Given the wide breadth of studies examining the role of NKT cells in cancer, only recent reviews and closely related articles have been cited and we apologize to those whose work may have been omitted due to space considerations. The authors have no competing financial interest. This work was supported by grants from the NIH/NCI to TJW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya J. Webb.

Additional information

This article is published in the Special Issue CD1, MR1, NKT, and MAIT: Evolution and Origins of Non-peptidic Antigen Recognition by T lymphocytes with Guest Editor Dr. Dirk Zajonc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shissler, S.C., Bollino, D.R., Tiper, I.V. et al. Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 68, 623–638 (2016). https://doi.org/10.1007/s00251-016-0928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0928-8

Keywords

Navigation