, Volume 67, Issue 5–6, pp 323–335 | Cite as

Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex

  • Karen E. TracyEmail author
  • Karen M. Kiemnec-Tyburczy
  • J. Andrew DeWoody
  • Gabriela Parra-Olea
  • Kelly R. Zamudio
Original Paper


Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host’s acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.


Ambystoma Balancing selection Disease Immunogenetics MHC 



We thank D. Weisrock for providing A. dumerilii tissue samples for this study, A. E. Savage and D. Rodriguez for the assistance with molecular protocols, R. C. Bell for the assistance with phylogenetic analyses, A. Ellison for supertyping of MHC, and M. Yuan for the assistance with figures. Members of the Zamudio lab group provided invaluable advice and feedback throughout this study. We also thank our two anonymous reviewers for their feedback, which greatly improved the final version of the manuscript. Funding for this study was provided by National Science Foundation Grants (DEB-0815315 and DEB-1120249 to K. R. Zamudio) and an award from the Dextra Undergraduate Research Endowment Fund (to K. E. Tracy).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The tissues used for this study were collected by Gabriela Parra-Olea (Parra-Olea et al. 2012). Tissues were collected under the permit FAUT-0106, issued by Secretaria del Medio Ambiente y Recursos Naturales and protocol #1999-0010 issued by the Cornell University Institutional Animal Care and Use Committee.

Supplementary material

251_2015_835_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 24 kb)
251_2015_835_MOESM2_ESM.pdf (190 kb)
ESM 2 (PDF 190 kb)


  1. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedCentralPubMedGoogle Scholar
  2. Babik W, Pabijan M, Radwan J (2008) Contrasting patterns of variation in MHC loci in the Alpine newt. Mol Ecol 17:2339–2355. doi: 10.1111/j.1365-294X.2008.03757.x CrossRefPubMedGoogle Scholar
  3. Babik W, Pabijan M, Arntzen JW et al (2009) Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol 18:769–781. doi: 10.1111/j.1365-294X.2008.04057.x CrossRefPubMedGoogle Scholar
  4. Baratti M, Dessi-Fulgheri F, Ambrosini R et al (2012) MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus. J Evol Biol 25:1531–1542. doi: 10.1111/j.1420-9101.2012.02534.x CrossRefPubMedGoogle Scholar
  5. Barribeau SM, Villinger J, Waldman B (2008) Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians. PLoS One 3:e2692. doi: 10.1371/journal.pone.0002692 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Borghans JAM, Beltman JB, De Boer RJ (2004) MHC polymorphism under host-pathogen coevolution. Immunogenetics 55:732–739. doi: 10.1007/s00251-003-0630-5 CrossRefPubMedGoogle Scholar
  7. Bos D, DeWoody J (2005) Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 57:775–781. doi: 10.1007/s00251-005-0038-5 CrossRefPubMedGoogle Scholar
  8. Bos DH, Williams RN, Gopurenko D et al (2009) Condition-dependent mate choice and a reproductive disadvantage for MHC-divergent male tiger salamanders. Mol Ecol 18:3307–3315. doi: 10.1111/j.1365-294X.2009.04242.x CrossRefPubMedGoogle Scholar
  9. Brown J, Jardetzky T, Gorga J et al (1993) 3-Dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39. doi: 10.1038/364033a0 CrossRefPubMedGoogle Scholar
  10. Bulut Z, McCormick C, Bos D, DeWoody J (2008) Polymorphism of alternative splicing of major histocompatibility complex transcripts in wild tiger salamanders. J Mol Evol 67:68–75. doi: 10.1007/s00239-008-9125-1 CrossRefPubMedGoogle Scholar
  11. Chen G, Robert J (2011) Antiviral immunity in amphibians. Viruses 3:2065–2086. doi: 10.3390/v3112065 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533. doi: 10.1007/s00251-012-0614-4 CrossRefPubMedGoogle Scholar
  13. Cohen N (1971) Amphibian transplantation reactions: a review. Am Zool 11:193–205. doi: 10.1093/icb/11.2.193 Google Scholar
  14. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150. doi: 10.1046/j.1472-4642.2003.00016.x CrossRefGoogle Scholar
  15. Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. doi: 10.1093/bioinformatics/btq429 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322CrossRefPubMedGoogle Scholar
  17. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095CrossRefPubMedGoogle Scholar
  18. Ellison A, Allainguillaume J, Girdwood S et al (2012) Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate. Proc R Soc B-Biol Sci 279:5004–5013. doi: 10.1098/rspb.2012.1929 CrossRefGoogle Scholar
  19. Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310. doi: 10.1146/annurev.micro.091208.073435 CrossRefPubMedGoogle Scholar
  20. Frank SA (2002) Genetic variability of hosts. Accessed 3 May 2014
  21. Frost, DR (2014) Amphibian species of the world: an online reference. Version 6.0. AmericanGoogle Scholar
  22. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  23. Gray M, Miller D, Hoverman J (2009) Ecology and pathology of amphibian ranaviruses. Dis Aquat Organ 87:243–266. doi: 10.3354/dao02138 CrossRefPubMedGoogle Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  25. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:UnpaginatedGoogle Scholar
  26. Hedrick PW, Poulin R (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56:1902–1908. doi: 10.1554/0014-3820(2002)056[1902:PRAGVA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  27. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231. doi: 10.1007/BF01245622 CrossRefPubMedGoogle Scholar
  28. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting F-ST. Nat Rev Genet 10:639–650. doi: 10.1038/nrg2611 CrossRefPubMedGoogle Scholar
  29. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435. doi: 10.1146/annurev.genet.32.1.415 CrossRefPubMedGoogle Scholar
  30. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi: 10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  31. Irschick DJ, Shaffer HB (1997) The polytypic species revisited: morphological differentiation among tiger salamanders (Ambystoma tigrinum) (Amphibia: Caudata). Herpetologica 53:30–49Google Scholar
  32. IUCN (2014) The IUCN red list of threatened species. Version 2014.2. Accessed 21 Oct 2014
  33. Kalinowski ST (2006) HW-QUICKCHECK: an easy-to-use computer program for checking genotypes for agreement with Hardy–Weinberg expectations. Mol Ecol Notes 6:974–979. doi: 10.1111/j.1471-8286.2006.01456.x CrossRefGoogle Scholar
  34. Kieswetter CM, Schneider CJ (2013) Phylogeography in the northern Andes: complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae). Mol Phylogenet Evol 69:417–429. doi: 10.1016/j.ympev.2013.08.007 CrossRefPubMedGoogle Scholar
  35. Klein J (1986) Natural history of the major histocompatibility complex. New YorkGoogle Scholar
  36. Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. In: Campbell A (ed) Annual review of genetics book series. California Annual Reviews, Palo Alto, pp 281–304Google Scholar
  37. Kobari F, Sato K, Shum B et al (1995) Exon-intron organization of Xenopus MHC class II β chain genes. Immunogenetics 42:376–385CrossRefPubMedGoogle Scholar
  38. Kurtz J, Kalbe M, Aeschlimann PB et al (2004) Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc B-Biol Sci 271:197–204. doi: 10.1098/rspb.2003.2567 CrossRefGoogle Scholar
  39. Laurens V, Chapusot C, del Rosario OM et al (2001) Axolotl MHC class II β chain: predominance of one allele and alternative splicing of the β1 domain. Eur J Immunol 31:506–515. doi: 10.1002/1521-4141(200102)31:2<506::AID-IMMU506>3.0.CO;2-P CrossRefPubMedGoogle Scholar
  40. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49PubMedCentralPubMedGoogle Scholar
  41. Li L, Wang BB, Ge YF, Wan QH (2014) Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int J Immunogenet 41:401–412. doi: 10.1111/iji.12135 CrossRefPubMedGoogle Scholar
  42. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  43. Martel A, Spitzen-van der Sluijs A, Blooi M et al (2013) Batrachochytrium salamandrivorans sp nov causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329. doi: 10.1073/pnas.1307356110 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Mattoccia M, Marta S, Romano A, Sbordoni V (2011) Phylogeography of an Italian endemic salamander (genus Salamandrina): glacial refugia, postglacial expansions, and secondary contact. Biol J Linn Soc 104:903–922. doi: 10.1111/j.1095-8312.2011.01747.x CrossRefGoogle Scholar
  45. McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241PubMedCentralPubMedGoogle Scholar
  46. Moritz C, Schneider C, Wake D (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 41:273–291. doi: 10.2307/2992567 CrossRefGoogle Scholar
  47. Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. Plos Genet. doi: 10.1371/journal.pgen.1002764 PubMedCentralPubMedGoogle Scholar
  48. Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol. doi: 10.1093/molbev/mst030 PubMedCentralPubMedGoogle Scholar
  49. Nadachowska-Brzyska K, Zieliński P, Radwan J, Babik W (2012) Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol Ecol 21:887–906. doi: 10.1111/j.1365-294X.2011.05347.x CrossRefPubMedGoogle Scholar
  50. O’Neill EM, Schwartz R, Bullock CT et al (2013) Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol Ecol 22:111–129. doi: 10.1111/mec.12049 CrossRefPubMedGoogle Scholar
  51. Parham P, Janeway CA (2005) The immune system. Garland Science, New YorkGoogle Scholar
  52. Parra-Olea G, Zamudio KR, Recuero E et al (2012) Conservation genetics of threatened Mexican axolotls (Ambystoma). Anim Conserv 15:61–72. doi: 10.1111/j.1469-1795.2011.00488.x CrossRefGoogle Scholar
  53. Pond SLK, Frost SDW (2005a) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. doi: 10.1093/molbev/msi105 CrossRefGoogle Scholar
  54. Pond SLK, Frost SDW (2005b) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. doi: 10.1093/bioinformatics/bti320 CrossRefPubMedGoogle Scholar
  55. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. doi: 10.1093/bioinformatics/bti079 CrossRefPubMedGoogle Scholar
  56. Pond SLK, Murrell B, Fourment M et al (2011) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 28:3033–3043. doi: 10.1093/molbev/msr125 CrossRefGoogle Scholar
  57. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  58. Richman AD, Herrera G, Reynoso VH et al (2007) Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum. Int J Immunogenet 34:475–478. doi: 10.1111/j.1744-313X.2007.00721.x CrossRefPubMedGoogle Scholar
  59. Robert J, Cohen N (2011) The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. Dev Comp Immunol 35:916–923. doi: 10.1016/j.dci.2011.01.014 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  62. Sammut B, Du Pasquier L, Ducoroy P et al (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29:2897–2907. doi: 10.1002/(SICI)1521-4141(199909)29:09<2897::AID-IMMU2897>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  63. Sandberg M, Eriksson L, Jonsson J et al (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491. doi: 10.1021/jm9700575 CrossRefPubMedGoogle Scholar
  64. Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci 108:16705–16710. doi: 10.1073/pnas.1106893108 CrossRefPubMedCentralPubMedGoogle Scholar
  65. Schad J, Sommer S, Ganzhorn JU (2004) MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conserv Genet 5:299–309. doi: 10.1023/B:COGE.0000031137.50239.d3 CrossRefGoogle Scholar
  66. Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499. doi: 10.1093/bioinformatics/btl427 CrossRefPubMedGoogle Scholar
  67. Schierup MH, Mikkelsen AM, Hein J (2001) Recombination, balancing selection and phylogenies in MHC and self-incompatibility genes. Genetics 159:1833–1844PubMedCentralPubMedGoogle Scholar
  68. Shaffer HB (1993) Phylogenetics of model organisms: the laboratory axolotl, Ambystoma mexicanum. Syst Biol 42:508–522. doi: 10.1093/sysbio/42.4.508 CrossRefGoogle Scholar
  69. Siddle HV, Kreiss A, Eldridge MDB et al (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci U S A 104:16221–16226. doi: 10.1073/pnas.0704580104 CrossRefPubMedCentralPubMedGoogle Scholar
  70. Skerratt LF, Berger L, Speare R et al (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134. doi: 10.1007/s10393-007-0093-5 CrossRefGoogle Scholar
  71. Swofford D (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer, Sunderland, MassachusettsGoogle Scholar
  72. Teacher AGF, Garner TWJ, Nichols RA (2009) Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). PLoS One 4:e4616. doi: 10.1371/journal.pone.0004616 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Tournefier A, Laurens V, Chapusot C et al (1998) Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev 166:259–277CrossRefPubMedGoogle Scholar
  74. Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009:pdb.emo128. doi:  10.1101/pdb.emo128
  75. Wegner KM, Kalbe M, Kurtz J et al (2003) Parasite selection for immunogenetic optimality. Science 301:1343. doi: 10.1126/science.1088293 CrossRefPubMedGoogle Scholar
  76. Weisrock DW, Shaffer HB, Storz BL et al (2006) Multiple nuclear gene sequences identify phylogenetic species boundaries in the rapidly radiating clade of Mexican ambystomatid salamanders. Mol Ecol 15:2489–2503. doi: 10.1111/j.1365-294X.2006.02961.x CrossRefPubMedGoogle Scholar
  77. Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintain high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol Ecol 7:1315–1322. doi: 10.1046/j.1365-294x.1998.00463.x CrossRefPubMedGoogle Scholar
  78. Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425. doi: 10.1534/genetics.105.044917 CrossRefPubMedCentralPubMedGoogle Scholar
  79. Zhu R, Chen Z, Wang J et al (2014) Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants. Dev Comp Immunol 42:311–322. doi: 10.1016/j.dci.2013.10.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karen E. Tracy
    • 1
    Email author
  • Karen M. Kiemnec-Tyburczy
    • 1
  • J. Andrew DeWoody
    • 2
  • Gabriela Parra-Olea
    • 3
  • Kelly R. Zamudio
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  3. 3.Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autonoma de México Ciudad UniversitariaCiudad de MéxicoMexico

Personalised recommendations