Skip to main content
Log in

Spectratype analysis of the T cell receptor δ CDR3 region of bovine γδ T cells responding to leptospira

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Gamma delta T cells comprise the majority of blood T cells in ruminants at birth and remain at high levels for several years with most expressing the WC1 co-receptor. A subpopulation of Bos taurus WC1+ cells expressing a restricted set of WC1 molecules respond immediately by proliferation and interferon-γ production to leptospira following vaccination, preceding the response by CD4 T cells. Our goal is to define the γδ T cell recognition elements involved. Previously, we showed that the responding cells employed a variety of TRDV genes indicating that the CDR1 and CDR2 of TCRδ could vary and may not be principally involved in antigen specificity. Murine and human γδ T cells bind T22 and self lipids through their CDR3δ. Like mice, cattle use up to five TRDD genes in a single CDR3δ adding flexibility to length and configuration for antigen binding. Here, we used spectratyping to evaluate the CDR3δ of leptopsira-responsive cells. Little or no compartmentalization of CDR3δ was found for antigen-responsive cells that incorporated TRDV1, TRDV2, or TRDV3 even though they comprise the majority of the leptospira-responding population. Compartmentalization occurred for TRDV4-containing transcripts and was maintained over time and among cattle. However, no common amino acid motif was apparent in those CDR3δ sequences, although a bias in D gene usage occurred. We hypothesize that the restricted set of WC1 co-receptors expressed by the responding cells may lend specificity to the response through their ability to bind bacteria facilitating interaction of various TCRs with bacterial components resulting in cross-linking and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams EJ, Chien YH, Garcia KC (2005) Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science 308(5719):227–231. doi:10.1126/science.1106885

    Article  CAS  PubMed  Google Scholar 

  • Adams EJ, Strop P, Shin S, Chien YH, Garcia KC (2008) An autonomous CDR3delta is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by gammadelta T cells. Nat Immunol 9(7):777–784. doi:10.1038/ni.1620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Antonacci R, Lanave C, Del Faro L, Vaccarelli G, Ciccarese S, Massari S (2005) Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes. Immunogenetics 57(3–4):254–266. doi:10.1007/s00251-005-0773-7

    Article  CAS  PubMed  Google Scholar 

  • Bailey TM, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, California

  • Blumerman SL, Herzig CT, Baldwin CL (2007) WC1+ gammadelta T cell memory population is induced by killed bacterial vaccine. Eur J Immunol 37(5):1204–1216. doi:10.1002/eji.200636216

    Article  CAS  PubMed  Google Scholar 

  • Blumerman SL, Herzig CT, Rogers AN, Telfer JC, Baldwin CL (2006) Differential TCR gene usage between WC1− and WC1+ ruminant gammadelta T cell subpopulations including those responding to bacterial antigen. Immunogenetics 58(8):680–692. doi:10.1007/s00251-006-0122-5

    Article  CAS  PubMed  Google Scholar 

  • Boudinot P, Marriotti-Ferrandiz ME, Pasquier LD, Benmansour A, Cazenave PA, Six A (2008) New perspectives for large-scale repertoire analysis of immune receptors. Mol Immunol 45(9):2437–2445. doi:10.1016/j.molimm.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Herzig CT, Alexander LJ, Keele JW, McDaneld TG, Telfer JC, Baldwin CL (2012) Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes. BMC Genet 13:86. doi:10.1186/1471-2156-13-86

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen C, Herzig CT, Telfer JC, Baldwin CL (2009) Antigenic basis of diversity in the gammadelta T cell co-receptor WC1 family. Mol Immunol 46(13):2565–2575. doi:10.1016/j.molimm.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Hsu H, Hudgens E, Telfer JC, Baldwin CL (2014) Signal transduction by different forms of the gammadelta T cell-specific pattern recognition receptor WC1. J Immunol 193(1):379–390. doi:10.4049/jimmunol.1400168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chien YH, Bonneville M (2006) Gamma delta T cell receptors. Cell Mol Life Sci 63(18):2089–2094. doi:10.1007/s00018-006-6020-z

    Article  CAS  PubMed  Google Scholar 

  • Chien YH, Konigshofer Y (2007) Antigen recognition by gammadelta T cells. Immunol Rev 215:46–58. doi:10.1111/j.1600-065X.2006.00470.x

    Article  CAS  PubMed  Google Scholar 

  • Conrad ML, Mawer MA, Lefranc MP, McKinnell L, Whitehead J, Davis SK, Pettman R, Koop BF (2007) The genomic sequence of the bovine T cell receptor gamma TRG loci and localization of the TRGC5 cassette. Vet Immunol Immunopathol 115(3–4):346–356. doi:10.1016/j.vetimm.2006.10.019

    Article  CAS  PubMed  Google Scholar 

  • Doherty ML, Bassett HF, Quinn PJ, Davis WC, Kelly AP, Monaghan ML (1996) A sequential study of the bovine tuberculin reaction. Immunology 87(1):9–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frith MC, Saunders NF, Kobe B, Bailey TL (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol 4(4):e1000071. doi:10.1371/journal.pcbi.1000071

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–95

    CAS  Google Scholar 

  • Hanby-Flarida MD, Trask OJ, Yang TJ, Baldwin CL (1996) Modulation of WC1, a lineage-specific cell surface molecule of gamma/delta T cells augments cellular proliferation. Immunology 88(1):116–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hebbeler AM, Cairo C, Cummings JS, Pauza CD (2007) Individual Vgamma2-Jgamma1.2+ T cells respond to both isopentenyl pyrophosphate and Daudi cell stimulation: generating tumor effectors with low molecular weight phosphoantigens. Cancer Immunol Immunother 56(6):819–829. doi:10.1007/s00262-006-0235-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herzig C, Blumerman S, Lefranc M-P, Baldwin C (2006a) Bovine T cell receptor gamma variable and constant genes: combinatorial usage by circulating gammadelta T cells. Immunogenetics 58(2–3):138–151. doi:10.1007/s00251-006-0097-2

    Article  CAS  PubMed  Google Scholar 

  • Herzig CT, Baldwin CL (2009) Genomic organization and classification of the bovine WC1 genes and expression by peripheral blood gamma delta T cells. BMC Genomics 10:191. doi:10.1186/1471-2164-10-191

    Article  PubMed Central  PubMed  Google Scholar 

  • Herzig CT, Blumerman SL, Baldwin CL (2006b) Identification of three new bovine T-cell receptor delta variable gene subgroups expressed by peripheral blood T cells. Immunogenetics 58(9):746–757. doi:10.1007/s00251-006-0136-z

    Article  CAS  PubMed  Google Scholar 

  • Herzig CT, Lefranc MP, Baldwin CL (2010) Annotation and classification of the bovine T cell receptor delta genes. BMC Genomics 11:100. doi:10.1186/1471-2164-11-100

    Article  PubMed Central  PubMed  Google Scholar 

  • Holtmeier W, Kaller J, Geisel W, Pabst R, Caspary WF, Rothkotter HJ (2002) Development and compartmentalization of the porcine TCR delta repertoire at mucosal and extraintestinal sites: the pig as a model for analyzing the effects of age and microbial factors. J Immunol 169(4):1993–2002

    Article  CAS  PubMed  Google Scholar 

  • Holtmeier W, Pfander M, Hennemann A, Zollner TM, Kaufmann R, Caspary WF (2001) The TCR-delta repertoire in normal human skin is restricted and distinct from the TCR-delta repertoire in the peripheral blood. J Invest Dermatol 116(2):275–280. doi:10.1046/j.1523-1747.2001.01250.x

    Article  CAS  PubMed  Google Scholar 

  • Kedzierska K, La Gruta NL, Davenport MP, Turner SJ, Doherty PC (2005) Contribution of T cell receptor affinity to overall avidity for virus-specific CD8+ T cell responses. Proc Natl Acad Sci U S A 102(32):11432–11437. doi:10.1073/pnas.0504851102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kepler TB, He M, Tomfohr JK, Devlin BH, Sarzotti M, Markert ML (2005) Statistical analysis of antigen receptor spectratype data. Bioinformatics 21(16):3394–3400. doi:10.1093/bioinformatics/bti539

    Article  CAS  PubMed  Google Scholar 

  • Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC (2005) The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates gammadelta T cell clones that express unique T cell receptors. J Leukoc Biol 77(2):199–208. doi:10.1189/jlb.0804482

    Article  CAS  PubMed  Google Scholar 

  • Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ (2013) Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like n gammadelta T cells. Immunity 39(6):1032–1042. doi:10.1016/j.immuni.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  • Machugh ND, Mburu JK, Carol MJ, Wyatt CR, Orden JA, Davis WC (1997) Identification of two distinct subsets of bovine gamma delta T cells with unique cell surface phenotype and tissue distribution. Immunology 92(3):340–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Waters WR (2014) Specific recognition of mycobacterial protein and peptide antigens by gammadelta T cell subsets following infection with virulent Mycobacterium bovis. J Immunol 192(6):2756–2769. doi:10.4049/jimmunol.1302567

    Article  CAS  PubMed  Google Scholar 

  • McHeyzer-Williams LJ, Panus JF, Mikszta JA, McHeyzer-Williams MG (1999) Evolution of antigen-specific T cell receptors in vivo: preimmune and antigen-driven selection of preferred complementarity-determining region 3 (CDR3) motifs. J Exp Med 189(11):1823–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  CAS  PubMed  Google Scholar 

  • Miqueu P, Guillet M, Degauque N, Dore JC, Soulillou JP, Brouard S (2007) Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. Mol Immunol 44(6):1057–1064. doi:10.1016/j.molimm.2006.06.026

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P, Arnoldi J, Russ F, Tonegawa S, Kaufmann SH (1993) Different roles of alpha beta and gamma delta T cells in immunity against an intracellular bacterial pathogen. Nature 365(6441):53–56. doi:10.1038/365053a0

    Article  CAS  PubMed  Google Scholar 

  • Naiman BM, Alt D, Bolin CA, Zuerner R, Baldwin CL (2001) Protective killed Leptospira borgpetersenii vaccine induces potent Th1 immunity comprising responses by CD4 and gammadelta T lymphocytes. Infect Immun 69(12):7550–7558. doi:10.1128/IAI. 69.12.7550-7558.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naiman BM, Blumerman S, Alt D, Bolin CA, Brown R, Zuerner R, Baldwin CL (2002) Evaluation of type 1 immune response in naive and vaccinated animals following challenge with Leptospira borgpetersenii serovar Hardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun 70(11):6147–6157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naumov YN, Hogan KT, Naumova EN, Pagel JT, Gorski J (1998) A class I MHC-restricted recall response to a viral peptide is highly polyclonal despite stringent CDR3 selection: implications for establishing memory T cell repertoires in “real-world” conditions. J Immunol 160(6):2842–2852

    CAS  PubMed  Google Scholar 

  • Pancer Z (2000) Dynamic expression of multiple scavenger receptor cysteine-rich genes in coelomocytes of the purple sea urchin. Proc Natl Acad Sci U S A 97(24):13156–13161. doi:10.1073/pnas.230096397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price S, Davies M, Villarreal-Ramos B, Hope J (2010) Differential distribution of WC1(+) gammadelta TCR(+) T lymphocyte subsets within lymphoid tissues of the head and respiratory tract and effects of intranasal M. bovis BCG vaccination. Vet Immunol Immunopathol 136(1–2):133–137. doi:10.1016/j.vetimm.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997-2009) ImageJ.

  • Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL (2005) Gammadelta T cell function varies with the expressed WC1 coreceptor. J Immunol 174(6):3386–3393

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom A, Scharf L, McRae G, Hawk AJ, Meredith SC, Adams EJ (2012) gammadelta T cell receptors recognize the non-classical major histocompatibility complex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion. J Biol Chem 287(8):6035–6043. doi:10.1074/jbc.M111.333153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sathiyaseelan T, Baldwin CL (2000) Evaluation of cell replication by bovine T cells in polyclonally activated cultures using carboxyfluorescein succinimidyl ester (CFSE) loading and flow cytometric analysis. Res Vet Sci 69(3):275–281. doi:10.1053/rvsc.2000.0429

    Article  CAS  PubMed  Google Scholar 

  • Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH (2005) Antigen recognition determinants of gammadelta T cell receptors. Science 308(5719):252–255. doi:10.1126/science.1106480

    Article  CAS  PubMed  Google Scholar 

  • Sourdive DJ, Murali-Krishna K, Altman JD, Zajac AJ, Whitmire JK, Pannetier C, Kourilsky P, Evavold B, Sette A, Ahmed R (1998) Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J Exp Med 188(1):71–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uhrberg M, Valiante NM, Young NT, Lanier LL, Phillips JH, Parham P (2001) The repertoire of killer cell Ig-like receptor and CD94:NKG2A receptors in T cells: clones sharing identical alpha beta TCR rearrangement express highly diverse killer cell Ig-like receptor patterns. J Immunol 166(6):3923–3932

    Article  CAS  PubMed  Google Scholar 

  • Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, Godfrey DI (2013) CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol 14(11):1137–1145. doi:10.1038/ni.2713

    Article  CAS  PubMed  Google Scholar 

  • Van Rhijn I, Spiering R, Smits M, van Blokland MT, de Weger R, van Eden W, Rutten VP, Koets AP (2007) Highly diverse TCR delta chain repertoire in bovine tissues due to the use of up to four D segments per delta chain. Mol Immunol 44(12):3155–3161. doi:10.1016/j.molimm.2007.02.003

    Article  PubMed  Google Scholar 

  • Wang F, Herzig C, Ozer D, Baldwin CL, Telfer JC (2009) Tyrosine phosphorylation of scavenger receptor cysteine-rich WC1 is required for the WC1-mediated potentiation of TCR-induced T-cell proliferation. Eur J Immunol 39(1):254–266. doi:10.1002/eji.200838472

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Herzig CT, Chen C, Hsu H, Baldwin CL, Telfer JC (2011) Scavenger receptor WC1 contributes to the gammadelta T cell response to Leptospira. Mol Immunol 48(6–7):801–809. doi:10.1016/j.molimm.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Welsh RM, Lin MY, Lohman BL, Varga SM, Zarozinski CC, Selin LK (1997) Alpha beta and gamma delta T-cell networks and their roles in natural resistance to viral infections. Immunol Rev 159:79–93

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Pizarro JC, Holmes MA, McBeth C, Groh V, Spies T, Strong RK (2011) Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc Natl Acad Sci U S A 108(6):2414–2419. doi:10.1073/pnas.1015433108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang YG, Ohta S, Yamada S, Shimizu M, Takagaki Y (1995) Diversity of T cell receptor delta-chain cDNA in the thymus of a one-month-old pig. J Immunol 155(4):1981–1993

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by USDA-NRI grants nos. 2006-01691 and 2005-01812, CSREES-USDA Massachusetts Agricultural Experiment Station under project no. MAS00913 and Multi-State NRSP-008 project no. MAS00955, and by AFRI Competitive Grant no. 2011-67015-30736 from the NIFA USDA-NIH program (NIH R01 HD070056-01) titled Dual Purpose with Dual Benefit: Research in Biomedicine and Agriculture using Agriculturally Important Domestic Species. Thanks to Deborah Frenkel for editorial assistance.

Ethical standards

This manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no financial relationship or conflict of interest with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Baldwin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Analysis of primers designed to specifically amplify TRDV genes for spectratype analysis for specificity. PBMC from three animals were evaluated with the primers as follows: top row,—lane 1 = 1 kb ladder; lanes 2–4 are TRDV1S1S2 primers with animals 3, 4, and 5, respectively; lanes 5–7 are TRDV1S3 primers with animals 3, 4, and 5, respectively; lanes 8–10 are TRDV1S4 primers with animals 3, 4, and 5, respectively. Bottom row—lane 1 = 1 kb ladder; lanes 2–4 are TRDV2 primers with animals 3, 4, and 5, respectively; lanes 5–7 are TRDV3 primers with animals 3, 4, and 5, respectively; lanes 8–10 are TRDV4 primers with animals 3, 4, and 5, respectively. (GIF 23 kb)

High resolution (TIFF 5713 kb)

Supplemental Fig. 2

Analysis of intraepithelial lymphocytes (IELs) by spectratyping. Results shown are for two calves (#7 and #8) comparing spectratypes of their ex vivo PBMC to their ex vivo IELs. In the results for TRDV2 primer sets, two lanes leaked during loading and thus are repeated in the adjacent lanes. (GIF 144 kb)

High resolution (TIFF 36177 kb)

ESM 1

(DOCX 103189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzig, C.T.A., Mailloux, V.L. & Baldwin, C.L. Spectratype analysis of the T cell receptor δ CDR3 region of bovine γδ T cells responding to leptospira. Immunogenetics 67, 95–109 (2015). https://doi.org/10.1007/s00251-014-0817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0817-y

Keywords

Navigation