Skip to main content
Log in

Systemic response to Campylobacter jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial enteritis worldwide with poultry products being a major source of C. jejuni contamination. The chicken is the natural reservoir of C. jejuni where bacteria colonize the digestive tract of poultry, but rarely cause symptoms of disease. To understand the systemic molecular response mechanisms to C. jejuni infection in chickens, total splenic RNA was isolated and applied to a whole genome chicken microarray for comparison between infected (I) and non-infected (N) chickens within and between genetic lines A and B. There were more total splenic host genes responding to the infection in resistant line A than in susceptible line B. Specifically, genes for lymphocyte activation, differentiation and humoral response, and Ig light and heavy chain were upregulated in the resistant line. In the susceptible line, genes for regulation of erythrocyte differentiation, hemopoiesis, and RNA biosynthetic process were all downregulated. An interaction analysis between genetic lines and treatment demonstrated distinct defense mechanisms between lines: the resistant line promoted apoptosis and cytochrome c release from mitochondria, whereas the susceptible line responded with a downregulation of both functions. This was the first time that such systemic defensive mechanisms against C. jejuni infection have been reported. The results of this study revealed novel molecular mechanisms of the systemic host responses to C. jejuni infection in chickens that warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acar JF, Goldstein FW (1997) Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis 24(Suppl 1):S67–S73

    Article  PubMed  CAS  Google Scholar 

  • Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics 20(4):578–580

    Article  PubMed  CAS  Google Scholar 

  • Altekruse SF, Stern NJ, Fields PI, Swerdlow DL (1999) Campylobacter jejuni—an emerging foodborne pathogen. Emerg Infect Dis 5(1):28–35

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35(Database issue):D760–D765

    Article  PubMed  CAS  Google Scholar 

  • Beery JT, Hugdahl MB, Doyle MP (1988) Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl Environ Microbiol 54(10):2365–2370

    PubMed  CAS  Google Scholar 

  • Bingham-Ramos LK, Ribardo DA, Hiendrixson DR (2008) Colonization characteristics of Campylobacter jejuni in a natural avian host 108th general meeting of American Society for Microbiology. Boston, MA, pp. D-047.

  • Boyd Y, Herbert EG, Marston KL, Jones MA, Barrow PA (2005) Host genes affect intestinal colonisation of newly hatched chickens by Campylobacter jejuni. Immunogenetics 57(3–4):248–253

    Article  PubMed  Google Scholar 

  • Cawthraw S, Ayling R, Nuijten P, Wassenar T, Newell D (1994) Isotype, specificity, and kinetics of systemic an mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis 38:341–349

    Article  PubMed  CAS  Google Scholar 

  • Cleveland WS (1974) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  • Cox NA, Richardson LJ, Buhr RJ, Bailey JS, Wilson JL, Hiett KL (2006) Detection of Campylobacter jejuni in various lymphoid organs of broiler breeder hens after oral or intravaginal inoculation. Poult Sci 85(8):1378–1382

    PubMed  CAS  Google Scholar 

  • de Vries FWTP (1975) The cost of maintenance processes in plant cells. Ann Bot 39(1):77–92

    Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  • Diaz de Tuesta AM, Chow Q, Geijo Martinez MP, Dimas Nunez J, Diaz de Tuesta FJ, Herranz CR, Val Perez E (2001) Tularemia outbreak in the province of Cuenca associated with crab handling. Rev Clin Esp 201(7):385–389

    PubMed  CAS  Google Scholar 

  • Faherty CS, Maurelli AT (2008) Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol 16(4):173–180

    Article  PubMed  CAS  Google Scholar 

  • Ferro PJ, Swaggerty CL, Kaiser P, Pevzner IY, Kogut MH (2004) Heterophils isolated from chickens resistant to extra-intestinal Salmonella enteritidis infection express higher levels of pro-inflammatory cytokine mRNA following infection than heterophils from susceptible chickens. Epidemiol Infect 132(6):1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Gaillard J, Finlay B (1996) Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect Immun 64(4):1299–1308

    PubMed  CAS  Google Scholar 

  • Gruntar I, Ocepek M, Avbersek J, Micunovic J, Pate M (2010) A pulsed-field gel electrophoresis study of the genetic diversity of Campylobacter jejuni and Campylobacter coli in poultry flocks in Slovenia. Acta Vet Hung 58(1):19–28

    Article  PubMed  Google Scholar 

  • Hu L, Kopecko DJ (1999) Campylobacter jejuni 81–176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun 67(8):4171–4182

    PubMed  CAS  Google Scholar 

  • Hu Z, Bao J, Reecy JM (2008) CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online Journal of Bioinformatics 9(2):108–112

    Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4(1):44–57

    Article  CAS  Google Scholar 

  • Janicke RU, Ng P, Sprengart ML, Porter AG (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273(25):15540–15545

    Article  PubMed  CAS  Google Scholar 

  • Jeurissen SH, Janse EM, van Rooijen N, Claassen E (1998) Inadequate anti-polysaccharide antibody responses in the chicken. Immunobiology 198(4):385–95

    Article  PubMed  CAS  Google Scholar 

  • Kopecko DJ, Hu L, Zaal KJ (2001) Campylobacter jejuni—microtubule-dependent invasion. Trends Microbiol 9(8):389–396

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14(1):96–102

    Article  PubMed  CAS  Google Scholar 

  • Li X, Chiang HI, Zhu J, Dowd SE, Zhou H (2008a) Characterization of a newly developed chicken 44K Agilent microarray. BMC Genomics 9(1):60

    Article  PubMed  Google Scholar 

  • Li X, Swaggerty CL, Kogut MH, Chiang H, Wang Y, Genovese KJ, He H, Stern NJ, Pevzner IY, Zhou H (2008b) The paternal effect of Campylobacter jejuni colonization in ceca in broilers. Poult Sci 87(9):1742–1747

    Article  PubMed  CAS  Google Scholar 

  • Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H, Zhou H (2010) Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS One 5(7):e11827

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Higgs R, Gaines S, Tierney J, James T, Lloyd AT, Fares MA, Mulcahy G, O’Farrelly C (2004) Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56(3):170–177

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Higgs R, Lloyd AT, O’Farrelly C, Herve-Grepinet V, Nys Y, Brinkman FS, Yu PL, Soulier A, Kaiser P, Zhang G, Lehrer RI (2007) Avian beta-defensin nomenclature: a community proposed update. Immunol Lett 110(1):86–89

    Article  PubMed  CAS  Google Scholar 

  • Meade KG, Narciandi F, Cahalane S, Reiman C, Allan B, O’Farrelly C (2008) Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 61(2):101–110

    Article  PubMed  Google Scholar 

  • Meade KG, Narciandi F, Cahalane S, Reiman C, Allan B, O’Farrelly C (2009) Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 61(2):101–110

    Article  PubMed  CAS  Google Scholar 

  • Mills SD, Finlay BB (1994) Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microb Pathog 17(6):409–423

    Article  PubMed  CAS  Google Scholar 

  • Murphy KM, Travers JP, Walport M (2007) Janeway’s immunobiology (immunobiology: the immune system (Janeway)). Garland Science, New York

    Google Scholar 

  • Smith CK, Abuoun M, Cawthraw SA, Humphrey TJ, Rothwell L, Kaiser P, Barrow PA, Jones MA (2008) Campylobacter colonization of the chicken induces a proinflammatory response in mucosal tissues. FEMS Immunol Med Microbiol 54(1):114–21

    Article  PubMed  CAS  Google Scholar 

  • Stern NJ, Meinersmann RJ, Cox NA, Bailey JS, Blankenship LC (1990) Influence of host lineage on cecal colonization by Campylobacter jejuni in chickens. Avian Dis 34(3):602–606

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Swaggerty CL, Ferro PJ, Pevzner IY, Kogut MH (2005a) Heterophils are associated with resistance to systemic Salmonella enteritidis infections in genetically distinct chicken lines. FEMS Immunol Med Microbiol 43(2):149–154

    Article  PubMed  CAS  Google Scholar 

  • Swaggerty CL, Lowry VK, Ferro PJ, Pevzner IY, Kogut MH (2005b) Disparity in susceptibility to vancomycin-resistant Enterococcus organ invasion in commercial broiler chickens that differ in innate immune responsiveness. Food & Agricultural Immunology 16(1):1–15

    Article  CAS  Google Scholar 

  • Swaggerty CL, Genovese KJ, He H, Duke SE, Pevzner IY, Kogut MH (2011) Broiler breeders with an efficient innate immune response are more resistant to Eimeria tenella. Poult Sci 90(5):1014–1019

    Article  PubMed  CAS  Google Scholar 

  • van Putten JP, van Alphen LB, Wosten MM, de Zoete MR (2009) Molecular mechanisms of campylobacter infection. Curr Top Microbiol Immunol 337:197–229

    Article  PubMed  Google Scholar 

  • Wickstrum JR, Hong KJ, Bokhari S, Reed N, McWilliams N, Horvat RT, Parmely MJ (2007) Coactivating signals for the hepatic lymphocyte gamma interferon response to Francisella tularensis. Infect Immun 75(3):1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15

    Article  PubMed  Google Scholar 

  • Zilbauer M, Dorrell N, Boughan PK, Harris A, Wren BW, Klein NJ, Bajaj-Elliott M (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Norman J. Stern from Poultry Microbiological Safety Research Unit, USDA, Athens, GA for kindly providing the bacterial strain. This project was supported by National Research Initiative Grant no. 2007–35604–17903 from the USDA Cooperative State Research, Education, and Extension Service Animal Genome program. The mention of commercial products is for the sole purpose of providing specific information and not a recommendation or endorsement by the USDA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael H. Kogut or Huaijun Zhou.

Additional information

Xianyao Li and Christina L. Swaggerty contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental file 1

Overlapped genes between AI/AN and BI/BN. This table provides a list of overlapped genes between AI/AN and BI/BN (XLS 54 kb)

Supplemental file 2

Fold enrichment for a significant gene in the comparison of AI/AN. This table shows the enriched GO BP terms for the differentially expressed genes in the comparison of AI/AN (XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Swaggerty, C.L., Kogut, M.H. et al. Systemic response to Campylobacter jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens. Immunogenetics 64, 59–69 (2012). https://doi.org/10.1007/s00251-011-0557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-011-0557-1

Keywords

Navigation