Skip to main content

Molecular Mechanisms of Campylobacter Infection

  • Chapter
  • First Online:
Molecular Mechanisms of Bacterial Infection via the Gut

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 337))

Abstract

Campylobacter jejuni is the principal bacterial foodborne pathogen. A major challenge still is to identify the virulence strategies exploited by C. jejuni. Recent genomics, proteomics, and metabolomics approaches indicate that C. jejuni displays extensive inter- and intrastrain variation. The diverse behavior enables bacterial adaptation to different environmental conditions and directs interactions with the gut mucosa. Here, we report recent progress in understanding the molecular mechanisms and functional consequences of the phenotype diversity. The results suggest that C. jejuni actively penetrates the intestinal mucus layer, secretes proteins mainly via its flagellar apparatus, is engulfed by intestinal cells, and can disrupt the integrity of the epithelial lining. C. jejuni stimulates the proinflammatory pathway and the production of a large repertoire of cytokines, chemokines, and innate effector molecules. Novel experimental infection models suggest that the activation of the innate immune response is important for the development of intestinal pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen KJ, Griffiths MW (2001) Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett 205:43–48

    CAS  PubMed  Google Scholar 

  • Allos BM, Blaser MJ (1995) Campylobacter jejuni and the expanding spectrum of related infections. Clin Infect Dis 20:1092–1099

    CAS  PubMed  Google Scholar 

  • Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, Aderem A (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 102:9247–9252

    CAS  PubMed  Google Scholar 

  • Ashgar SS, Oldfield NJ, Wooldridge KG, Jones MA, Irving GJ, Turner DP, Ala'Aldeen DA (2007) CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut. J Bacteriol 189:1856–1865

    CAS  PubMed  Google Scholar 

  • Avril T, Wagner ER, Willison HJ, Crocker PR (2006) Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun 74:4133–4141

    CAS  PubMed  Google Scholar 

  • Babakhani FK, Bradley GA, Joens LA (1993) Newborn piglet model for campylobacteriosis. Infect Immun 61:3466–3475

    CAS  PubMed  Google Scholar 

  • Bacon DJ, Alm RA, Hu L, Hickey TE, Ewing CP, Batchelor RA, Trust TJ, Guerry P (2002) DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81–176. Infect Immun 70:6242–6250

    CAS  PubMed  Google Scholar 

  • Bacon DJ, Szymanski CM, Burr DH, Silver RP, Alm RA, Guerry P (2001) A phase-variable capsule is involved in virulence of Campylobacter jejuni 81–176. Mol Microbiol 40:769–777

    CAS  PubMed  Google Scholar 

  • Bakhiet M, Al-Salloom FS, Qareiballa A, Bindayna K, Farid I, Botta GA (2004) Induction of alpha and beta chemokines by intestinal epithelial cells stimulated with Campylobacter jejuni. J Infect 48:236–244

    PubMed  Google Scholar 

  • Barnes IH, Bagnall MC, Browning DD, Thompson SA, Manning G, Newell DG (2007) Gamma-glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni. Microb Pathog 43:198–207

    CAS  PubMed  Google Scholar 

  • Beery JT, Hugdahl MB, Doyle MP (1988) Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl Environ Microbiol 54:2365–2370

    CAS  PubMed  Google Scholar 

  • Biswas D, Itoh K, Sasakawa C (2000) Uptake pathways of clinical and healthy animal isolates of Campylobacter jejuni into INT-407 cells. FEMS Immunol Med Microbiol 29:203–211

    CAS  PubMed  Google Scholar 

  • Biswas D, Niwa H, Itoh K (2004) Infection with Campylobacter jejuni induces tyrosine-phosphorylated proteins into INT-407 cells. Microbiol Immunol 48:221–228

    CAS  PubMed  Google Scholar 

  • Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ (1988) Experimental Campylobacter jejuni infection in humans. J Infect Dis 157:472–479

    CAS  PubMed  Google Scholar 

  • Boosinger TR, Powe TA (1988) Campylobacter jejuni infections in gnotobiotic pigs. Am J Vet Res 49:456–458

    CAS  PubMed  Google Scholar 

  • Brás AM, Ketley JM (1999) Transcellular translocation of Campylobacter jejuni across human polarised epithelial monolayers. FEMS Microbiol Lett 179:209–215

    PubMed  Google Scholar 

  • Burnens A, Stucki U, Nicolet J, Frey J (1995) Identification and characterization of an immunogenic outer membrane protein of Campylobacter jejuni. J Clin Microbiol 33:2826–2832

    CAS  PubMed  Google Scholar 

  • Buzby JC, Roberts T (1997) Economic costs and trade impacts of microbial foodborne illness. World Health Stat Q 50:57–66

    CAS  PubMed  Google Scholar 

  • Chang C, Miller JF (2006) Campylobacter jejuni colonization of mice with limited enteric flora. Infect Immun 74:5261–5271

    CAS  PubMed  Google Scholar 

  • Chen ML, Ge Z, Fox JG, Schauer DB (2006) Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect Immun 74:6581–6589

    CAS  PubMed  Google Scholar 

  • Clark CG, Beeston A, Bryden L, Wang G, Barton C, Cuff W, Gilmour MW, Ng LK (2007) Phylogenetic relationships of Campylobacter jejuni based on porA sequences. Can J Microbiol 53:27–38

    CAS  PubMed  Google Scholar 

  • Clark CG, Ng LK (2008) Sequence variability of Campylobacter temperate bacteriophages. BMC Microbiol 8:49

    PubMed  Google Scholar 

  • Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL (2002) Human campylobacteriosis in developing countries. Emerg Infect Dis 8:237–244

    PubMed  Google Scholar 

  • Colgan T, Lambert JR, Newman A, Luk SC (1980) Campylobacter jejuni enterocolitis. A clinicopathologic study. Arch Pathol Lab Med 104:571–574

    CAS  PubMed  Google Scholar 

  • Corcoran AT, Annuk H, Moran AP (2006) The structure of the lipid anchor of Campylobacter jejuni polysaccharide. FEMS Microbiol Lett 257:228–235

    CAS  PubMed  Google Scholar 

  • Coward C, Grant AJ, Swift C, Philp J, Towler R, Heydarian M, Frost JA, Maskell DJ (2006) Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl Environ Microbiol 72:4638–4647

    CAS  PubMed  Google Scholar 

  • Day WA Jr, Sajecki JL, Pitts TM, Joens LA (2000) Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun 68:6337–6345

    CAS  PubMed  Google Scholar 

  • Dé E, Jullien M, Labesse G, Pagès JM, Molle G, Bolla JM (2000) MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore-forming protein. FEBS Lett 469:93–97

    PubMed  Google Scholar 

  • De Melo MA, Gabbiani G, Pechere JC (1989) Cellular events and intracellular survival of Campylobacter jejuni during infection of HEp-2 cells. Infect Immun 57:2214–2222

    PubMed  Google Scholar 

  • de Melo MA, Pechere JC (1990) Identification of Campylobacter jejuni surface proteins that bind to eucaryotic cells in vitro. Infect Immun 58:1749–1756

    PubMed  Google Scholar 

  • Dzieciatkowska M, Brochu D, van Belkum A, Heikema AP, Yuki N, Houliston RS, Richards JC, Gilbert M, Li J (2007) Mass spectrometric analysis of intact lipooligosaccharide: direct evidence for O-acetylated sialic acids and discovery of O-linked glycine expressed by Campylobacter jejuni. Biochemistry 46:14704–14714

    CAS  PubMed  Google Scholar 

  • Elliott KT, Zhulin IB, Stuckey JA, DiRita VJ (2009) Conserved residues in the HAMP domain define a new family of proposed bipartite energy taxis receptors. J Bacteriol 191:375–387

    CAS  PubMed  Google Scholar 

  • Elliott KT, DiRita VJ (2008) Characterization of CetA and CetB, a bipartite energy taxis system in Campylobacter jejuni. Mol Microbiol 69:1091–103

    CAS  PubMed  Google Scholar 

  • Everest PH, Cole AT, Hawkey CJ, Knutton S, Goossens H, Butzler JP, Ketley JM, Williams PH (1993) Roles of leukotriene B4, prostaglandin E2, and cyclic AMP in Campylobacter jejuni-induced intestinal fluid secretion. Infect Immun 61:4885–4887

    CAS  PubMed  Google Scholar 

  • Everest P (2005) Campylobacter spp. and the ability to elicit intestinal inflammatory responses. In: Ketley JM, Konkel ME (eds) Campylobacter: molecular and cellular biology. Horizon Bioscience, Norfolk, pp 421–434

    Google Scholar 

  • Ferrero RL, Lee A (1988) Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J Gen Microbiol 134:53–59

    CAS  PubMed  Google Scholar 

  • Fields JA, Thompson SA (2008) Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion. J Bacteriol 190:3411–3416

    CAS  PubMed  Google Scholar 

  • Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15

    PubMed  Google Scholar 

  • Fox JG, Rogers AB, Whary MT, Ge Z, Taylor NS, Xu S, Horwitz BH, Erdman SE (2004) Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Camplyobacter jejuni but not with C. jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect Immun 72:1116–1125

    CAS  PubMed  Google Scholar 

  • Fry BN, Feng S, Chen YY, Newell DG, Coloe PJ, Korolik V (2000) The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun 68:2594–2601

    CAS  PubMed  Google Scholar 

  • Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wösten MM, van Putten JP, van der Graaf-van Bloois L, Parker CT, van der Wal FJ (2009) A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol. doi:10.1128/JB.01430-08

    Google Scholar 

  • Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, Egelman EH (2008) Divergence of quaternary structures among bacterial flagellar filaments. Science 320:382–385

    CAS  PubMed  Google Scholar 

  • Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW (2002) The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen. Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 277:327–337

    CAS  PubMed  Google Scholar 

  • Godman G, Woda B, Kolberg R, Berl S (1980) Redistribution of contractile and cytoskeletal components induced by cytochalasin. II. In HeLa and HEp2 cells. Eur J Cell Biol 22:745–754

    CAS  PubMed  Google Scholar 

  • Godschalk PC, Kuijf ML, Li J, St Michael F, Ang CW, Jacobs BC, Karwaski MF, Brochu D, Moterassed A, Endtz HP, van Belkum A, Gilbert M (2007) Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes. Infect Immun 75:1245–1254

    CAS  PubMed  Google Scholar 

  • Golden NJ, Acheson DW (2002) Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 70:1761–1771

    CAS  PubMed  Google Scholar 

  • Goon S, Kelly JF, Logan SM, Ewing CP, Guerry P (2003) Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol 50:659–671

    CAS  PubMed  Google Scholar 

  • Goon S, Ewing CP, Lorenzo M, Pattarini D, Majam G, Guerry P (2006) A sigma28-regulated nonflagella gene contributes to virulence of Campylobacter jejuni 81–176. Infect Immun 74:769–772

    CAS  PubMed  Google Scholar 

  • Grant CC, Konkel ME, Cieplak W Jr, Tompkins LS (1993) Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 61:1764–1771

    CAS  PubMed  Google Scholar 

  • Guccione E, Leon-Kempis Mdel R, Pearson BM, Hitchin E, Mulholland F, van Diemen PM, Stevens MP, Kelly DJ (2008) Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol 69:77–93

    CAS  PubMed  Google Scholar 

  • Guerry P (2007) Campylobacter flagella: not just for motility. Trends Microbiol 15:456–461

    CAS  PubMed  Google Scholar 

  • Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311

    CAS  PubMed  Google Scholar 

  • Guerry P, Szymanski CM (2008) Campylobacter sugars sticking out. Trends Microbiol 16:428–435

    CAS  PubMed  Google Scholar 

  • Guerry P, Szymanski CM, Prendergast MM, Hickey TE, Ewing CP, Pattarini DL, Moran AP (2002) Phase variation of Campylobacter jejuni 81–176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect Immun 70:787–793

    CAS  PubMed  Google Scholar 

  • Havelaar AH, van Pelt W, Ang CW, Wagenaar JA, van Putten JPM, Gross U, Newell DG (2009) Immunity to Campylobacter: its role in risk assessment and epidemiology. Crit Rev Microbiol. 35:1–22

    Google Scholar 

  • He Y, Frye JG, Strobaugh TP, Chen CY (2008) Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81–176. Foodborne Pathog Dis 5:399–415

    CAS  PubMed  Google Scholar 

  • Hendrixson DR, Akerley BJ, DiRita VJ (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224

    CAS  PubMed  Google Scholar 

  • Hendrixson DR, DiRita VJ (2002) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484

    Google Scholar 

  • Hendrixson DR, DiRita VJ (2003) Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702

    CAS  PubMed  Google Scholar 

  • Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484

    CAS  PubMed  Google Scholar 

  • Hickey TE, Baqar S, Bourgeois AL, Ewing CP, Guerry P (1999) Campylobacter jejuni-stimulated secretion of interleukin-8 by INT407 cells. Infect Immun 67:88–93

    CAS  PubMed  Google Scholar 

  • Hickey TE, Majam G, Guerry P (2005) Intracellular survival of Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. Infect Immun 73:5194–5197

    CAS  PubMed  Google Scholar 

  • Hickey TE, McVeigh AL, Scott DA, Michielutti RE, Bixby A, Carroll SA, Bourgeois AL, Guerry P (2000) Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 68:6535–6541

    CAS  PubMed  Google Scholar 

  • Hodgson AE, McBride BW, Hudson MJ, Hall G, Leach SA (1998) Experimental campylobacter infection and diarrhoea in immunodeficient mice. J Med Microbiol 47:799–809

    CAS  PubMed  Google Scholar 

  • Hofreuter D, Novik V, Galán JE (2008) Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4:425–433

    CAS  PubMed  Google Scholar 

  • Hofreuter D, Tsai J, Watson RO, Novik V, Altman B, Benitez M, Clark C, Perbost C, Jarvie T, Du L, Galán JE (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infect Immun 74:4694–4707

    CAS  PubMed  Google Scholar 

  • Horvath AR, Kellie S (1990) Regulation of integrin mobility and cytoskeletal association in normal and RSV-transformed chick embryo fibroblasts. J Cell Sci 97:307–315

    CAS  PubMed  Google Scholar 

  • Hu L, Bray MD, Osorio M, Kopecko DJ (2006a) Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect Immun 74:2697–2705

    CAS  PubMed  Google Scholar 

  • Hu L, Hickey TE (2005) Campylobacter jejuni induces secretion of proinflammatory chemokines from human intestinal epithelial cells. Infect Immun 73:4437–4440

    CAS  PubMed  Google Scholar 

  • Hu L, Kopecko DJ (1999) Campylobacter jejuni 81–176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun 67:4171–4182

    CAS  PubMed  Google Scholar 

  • Hu L, McDaniel JP, Kopecko DJ (2006b) Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81–176. Microb Pathog 40:91–100

    CAS  PubMed  Google Scholar 

  • Hu L, Raybourne RB, Kopecko DJ (2005) Ca2+ release from host intracellular stores and related signal transduction during Campylobacter jejuni 81–176 internalization into human intestinal cells. Microbiology 151:3097–3105

    CAS  PubMed  Google Scholar 

  • Hu L, Tall BD, Curtis SK, Kopecko DJ (2008) Enhanced microscopic definition of Campylobacter jejuni 81–176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells. Infect Immun 76:5294–5304

    CAS  PubMed  Google Scholar 

  • Hugdahl MB, Beery JT, Doyle MP (1988) Chemotactic behavior of Campylobacter jejuni. Infect Immun 56:1560–1566

    CAS  PubMed  Google Scholar 

  • Jesudason MV, Hentges DJ, Pongpech P (1989) Colonization of mice by Campylobacter jejuni. Infect Immun 57:2279–2282

    CAS  PubMed  Google Scholar 

  • Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL (2001) JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 39:1225–1236

    CAS  PubMed  Google Scholar 

  • Jin S, Song YC, Emili A, Sherman PM, Chan VL (2003) JlpA of Campylobacter jejuni interacts with surface-exposed heat shock protein 90alpha and triggers signalling pathways leading to the activation of NF-kappaB and p38 MAP kinase in epithelial cells. Cell Microbiol 5:165–174

    CAS  PubMed  Google Scholar 

  • Johanesen PA, Dwinell MB (2006) Flagellin-independent regulation of chemokine host defense in Campylobacter jejuni-infected intestinal epithelium. Infect Immun 74:3437–3447

    CAS  PubMed  Google Scholar 

  • Jones MA, Totemeyer S, Maskell DJ, Bryant CE, Barrow PA (2003) Induction of proinflammatory responses in the human monocytic cell line THP-1 by Campylobacter jejuni. Infect Immun 71:2626–2633

    CAS  PubMed  Google Scholar 

  • Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396

    CAS  PubMed  Google Scholar 

  • Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188:4312–4320

    CAS  PubMed  Google Scholar 

  • Kanipes MI, Holder LC, Corcoran AT, Moran AP, Guerry P (2004) A deep-rough mutant of Campylobacter jejuni 81–176 is noninvasive for intestinal epithelial cells. Infect Immun 72:2452–2455

    CAS  PubMed  Google Scholar 

  • Kanwar RK, Ganguly NK, Kumar L, Rakesh J, Panigrahi D, Walia BN (1995) Calcium and protein kinase C play an important role in Campylobacter jejuni-induced changes in Na+ and Cl- transport in rat ileum in vitro. Biochim Biophys Acta 1270:179–192

    PubMed  Google Scholar 

  • Karlyshev AV, Champion OL, Churcher C, Brisson JR, Jarrell HC, Gilbert M, Brochu D, St Michael F, Li J, Wakarchuk WW, Goodhead I, Sanders M, Stevens K, White B, Parkhill J, Wren BW, Szymanski CM (2005) Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol Microbiol 55:90–103

    CAS  PubMed  Google Scholar 

  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW (2004) The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150:1957–1964

    CAS  PubMed  Google Scholar 

  • Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW (2000) Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35:529–541

    CAS  PubMed  Google Scholar 

  • Karlyshev AV, Linton D, Gregson NA, Wren BW (2002) A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 148:473–480

    CAS  PubMed  Google Scholar 

  • Karlyshev AV, McCrossan MV, Wren BW (2001) Demonstration of polysaccharide capsule in Campylobacter jejuni using electron microscopy. Infect Immun 69:5921–24

    CAS  PubMed  Google Scholar 

  • Keestra AM, van Putten JPM (2008) Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway. J Immunol 181:4354–4362

    CAS  PubMed  Google Scholar 

  • Keestra AM, de Zoete MR, van Aubel RA, van Putten JPM (2008) Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 45:1298–1307

    CAS  PubMed  Google Scholar 

  • Keestra AM, de Zoete MR, van Aubel RA, van Putten JPM (2007) The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. J Immunol 178:7110–7119

    CAS  PubMed  Google Scholar 

  • Kervella M, Pages JM, Pei Z, Grollier G, Blaser MJ, Fauchere JL (1993) Isolation and characterization of two Campylobacter glycine-extracted proteins that bind to HeLa cell membranes. Infect Immun 61:3440–3448

    CAS  PubMed  Google Scholar 

  • Kiehlbauch JA, Albach RA, Baum LL, Chang KP (1985) Phagocytosis of Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect Immun 48:446–451

    CAS  PubMed  Google Scholar 

  • Konkel ME, Christensen JE, Keech AM, Monteville MR, Klena JD, Garvis SG (2005) Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein. Mol Microbiol 57:1022–1035

    CAS  PubMed  Google Scholar 

  • Konkel ME, Garvis SG, Tipton SL, Anderson DE Jr, Cieplak W Jr (1997) Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol Microbiol 24:953–963

    CAS  PubMed  Google Scholar 

  • Konkel ME, Hayes SF, Joens LA, Cieplak W Jr (1992a) Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microb Pathog 13:357–370

    CAS  PubMed  Google Scholar 

  • Konkel ME, Kim BJ, Rivera-Amill V, Garvis SG (1999) Identification of proteins required for the internalization of Campylobacter jejuni into cultured mammalian cells. Adv Exp Med Biol 473:215–224

    CAS  PubMed  Google Scholar 

  • Konkel ME, Mead DJ, Cieplak W Jr (1996) Cloning, sequencing, and expression of a gene from Campylobacter jejuni encoding a protein (Omp18) with similarity to peptidoglycan-associated lipoproteins. Infect Immun 64:1850–1853

    CAS  PubMed  Google Scholar 

  • Konkel ME, Mead DJ, Hayes SF, Cieplak W Jr (1992b) Translocation of Campylobacter jejuni across human polarized epithelial cell monolayer cultures. J Infect Dis 166:308–315

    CAS  PubMed  Google Scholar 

  • Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, Mills DC, Watson DC, Hernandez M, Kelly JF, Wacker M, Aebi M (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25:1957–1966

    CAS  PubMed  Google Scholar 

  • Krause-Gruszczynska M, Rohde M, Hartig R, Genth H, Schmidt G, Keo T, Konig W, Miller WG, Konkel ME, Backert S (2007) Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cell Microbiol 9:2431–2444

    CAS  PubMed  Google Scholar 

  • Lara-Tejero M, Galán JE (2001) CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69:4358–4365

    CAS  PubMed  Google Scholar 

  • Lecuit M, Abachin E, Martin A, Poyart C, Pochart P, Suarez F, Bengoufa D, Feuillard J, Lavergne A, Gordon JI, Berche P, Guillevin L, Lortholary O (2004) Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 350:239–248

    CAS  PubMed  Google Scholar 

  • Lee A, O'Rourke JL, Barrington PJ, Trust TJ (1986) Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni : a mouse cecal model. Infect Immun 51:536–546

    CAS  PubMed  Google Scholar 

  • Lee RB, Hassane DC, Cottle DL, Pickett CL (2003) Interactions of Campylobacter jejuni cytolethal distending toxin subunits CdtA and CdtC with HeLa cells. Infect Immun 71:4883–4890

    CAS  PubMed  Google Scholar 

  • Leon-Kempis Mdel R, Guccione E, Mulholland F, Williamson MP, Kelly DJ (2006) The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 60:1262–1275

    PubMed  Google Scholar 

  • Linton D, Gilbert M, Hitchen PG, Dell A, Morris HR, Wakarchuk WW, Gregson NA, Wren BW (2000) Phase variation of a beta-1, 3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol Microbiol 37:501–514

    CAS  PubMed  Google Scholar 

  • Logan SM, Hui JP, Vinogradov E, Aubry AJ, Melanson JE, Kelly JF, Nothaft H, Soo EC (2009) Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches. FEBS J 276:1014–1023

    CAS  PubMed  Google Scholar 

  • Logan SM, Kelly JF, Thibault P, Ewing CP, Guerry P (2002) Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol 46:587–597

    CAS  PubMed  Google Scholar 

  • Louwen R, Heikema A, van Belkum A, Ott A, Gilbert M, Ang W, Endtz HP, Bergman MP, Nieuwenhuis EE (2008) The sialylated lipooligosaccharide outer core in Campylobacter jejuni is an important determinant for epithelial cell invasion. Infect Immun 76:4431–4438

    CAS  PubMed  Google Scholar 

  • Louwen RP, van Belkum A, Wagenaar JA, Doorduyn Y, Achterberg R, Endtz HP (2006) Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis. J Clin Microbiol 44:1867–1868

    CAS  PubMed  Google Scholar 

  • MacCallum A, Haddock G, Everest PH (2005a) Campylobacter jejuni activates mitogen-activated protein kinases in Caco-2 cell monolayers and in vitro infected primary human colonic tissue. Microbiology 151:2765–2772

    CAS  PubMed  Google Scholar 

  • MacCallum A, Hardy SP, Everest PH (2005b) Campylobacter jejuni inhibits the absorptive transport functions of Caco-2 cells and disrupts cellular tight junctions. Microbiology 151:2451–2458

    CAS  PubMed  Google Scholar 

  • MacKichan JK, Gaynor EC, Chang C, Cawthraw S, Newell DG, Miller JF, Falkow S (2004) The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol Microbiol 54:1269–1286

    CAS  PubMed  Google Scholar 

  • Malik-Kale P, Parker CT, Konkel ME (2008) Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol 190:2286–2297

    CAS  PubMed  Google Scholar 

  • Mansfield LS, Bell JA, Wilson DL, Murphy AJ, Elsheikha HM, Rathinam VA, Fierro BR, Linz JE, Young VB (2007) C57BL/6 and congenic interleukin-10-deficient mice can serve as models of Campylobacter jejuni colonization and enteritis. Infect Immun 75:1099–1115

    CAS  PubMed  Google Scholar 

  • Marchant J, Wren B, Ketley J (2002) Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol 10:155–159

    CAS  PubMed  Google Scholar 

  • McLennan MK, Ringoir DD, Frirdich E, Svensson SL, Wells DH, Jarrell H, Szymanski CM, Gaynor EC (2008) Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. J Bacteriol 190:1097–1107

    CAS  PubMed  Google Scholar 

  • McNally DJ, Hui JP, Aubry AJ, Mui KK, Guerry P, Brisson JR, Logan SM, Soo EC (2006) Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. J Biol Chem 281:18489–18498

    CAS  PubMed  Google Scholar 

  • McNally DJ, Lamoureux MP, Karlyshev AV, Fiori LM, Li J, Thacker G, Coleman RA, Khieu NH, Wren BW, Brisson JR, Jarrell HC, Szymanski CM (2007) Commonality and biosynthesis of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni. J Biol Chem 282:28566–28576

    CAS  PubMed  Google Scholar 

  • McSweegan E, Burr DH, Walker RI (1987) Intestinal mucus gel and secretory antibody are barriers to Campylobacter jejuni adherence to INT 407 cells. Infect Immun 55:1431–1435

    CAS  PubMed  Google Scholar 

  • McSweegan E, Walker RI (1986) Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect Immun 53:141–148

    CAS  PubMed  Google Scholar 

  • Meinersmann RJ, Rigsby WE, Stern NJ, Kelley LC, Hill JE, Doyle MP (1991) Comparative study of colonizing and noncolonizing Campylobacter jejuni. Am J Vet Res 52:1518–1522

    CAS  PubMed  Google Scholar 

  • Mellits KH, Mullen J, Wand M, Armbruster G, Patel A, Connerton PL, Skelly M, Connerton IF (2002) Activation of the transcription factor NF-kappaB by Campylobacter jejuni. Microbiology 148:2753–2763

    CAS  PubMed  Google Scholar 

  • Mellits KH, Connerton IF, Loughlin MF, Clarke P, Smith J, Dillon E, Connerton PL, Mulholland F, Hawkey CJ (2009) Induction of a chemoattractant transcriptional response by a Campylobacter jejuni boiled cell extract in colonocytes. BMC Microbiol. 9:28

    PubMed  Google Scholar 

  • Medema GJ, Teunis PF, Havelaar AH, Haas CN (1996) Assessment of the dose-response relationship of Campylobacter jejuni. Int J Food Microbiol 30:101–111

    CAS  PubMed  Google Scholar 

  • Miller WG, Heath S, Mandrell RE (2007) Cryptic plasmids isolated from Campylobacter strains represent multiple, novel incompatibility groups. Plasmid 57:108–117

    CAS  PubMed  Google Scholar 

  • Monteville MR, Konkel ME (2002) Fibronectin-facilitated invasion of T84 eukaryotic cells by Campylobacter jejuni occurs preferentially at the basolateral cell surface. Infect Immun 70:6665–6671

    CAS  PubMed  Google Scholar 

  • Monteville MR, Yoon JE, Konkel ME (2003) Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology 149:153–165

    CAS  PubMed  Google Scholar 

  • Moran AP (1995) Biological and serological characterization of Campylobacter jejuni lipopolysaccharides with deviating core and lipid A structures. FEMS Immunol Med Microbiol 11:121–130

    CAS  PubMed  Google Scholar 

  • Moran AP (1997) Structure and conserved characteristics of Campylobacter jejuni lipopolysaccharides. J Infect Dis 176(Suppl 2):S115–121

    CAS  PubMed  Google Scholar 

  • Morooka T, Umeda A, Amako K (1985) Motility as an intestinal colonization factor for Campylobacter jejuni. J Gen Microbiol 131:1973–1980

    CAS  PubMed  Google Scholar 

  • Moser I, Schröder W (1997) Hydrophobic characterization of thermophilic Campylobacter species and adhesion to INT 407 cell membranes and fibronectin. Microb Pathog 22:155–164

    Google Scholar 

  • Moser I, Schroeder W, Salnikow J (1997) Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. FEMS Microbiol Lett 157:233–238

    CAS  PubMed  Google Scholar 

  • Muller A, Leon-Kempis MD, Dodson E, Wilson KS, Wilkinson AJ, Kelly DJ (2007) A bacterial virulence factor with a dual role as an adhesin and a solute-binding protein: The crystal Structure at 1.5 A resolution of the PEB1a protein from the food-borne human pathogen Campylobacter jejuni. J Mol Biol 372:160–171

    PubMed  Google Scholar 

  • Naikare H, Palyada K, Panciera R, Marlow D, Stintzi A (2006) Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect Immun 74:5433–5444

    CAS  PubMed  Google Scholar 

  • Newell DG, Pearson A (1984) The invasion of epithelial cell lines and the intestinal epithelium of infant mice by Campylobacter jejuni/coli. J Diarrhoeal Dis Res 2:19–26

    CAS  PubMed  Google Scholar 

  • Oelschlaeger TA, Guerry P, Kopecko DJ (1993) Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci USA 90:6884–6888

    CAS  PubMed  Google Scholar 

  • Palyada K, Threadgill D, Stintzi A (2004) Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729

    CAS  PubMed  Google Scholar 

  • Parker CT, Gilbert M, Yuki N, Endtz HP, Mandrell RE (2008) Characterization of lipooligosaccharide-biosynthetic loci of Campylobacter jejuni reveals new lipooligosaccharide classes: evidence of mosaic organizations. J Bacteriol 190:5681–5689

    CAS  PubMed  Google Scholar 

  • Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE (2006) Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol 44:4125–4135

    CAS  PubMed  Google Scholar 

  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668

    CAS  PubMed  Google Scholar 

  • Pearson BM, Pin C, Wright J, I'Anson K, Humphrey T, Wells JM (2003) Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett 554:224–230

    CAS  PubMed  Google Scholar 

  • Pei Z, Burucoa C, Grignon B, Baqar S, Huang XZ, Kopecko DJ, Bourgeois AL, Fauchere JL, Blaser MJ (1998) Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect Immun 66:938–943

    CAS  PubMed  Google Scholar 

  • Poly F, Ewing C, Goon S, Hickey TE, Rockabrand D, Majam G, Lee L, Phan J, Savarino NJ, Guerry P (2007) Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect Immun 75:3859–3867

    CAS  PubMed  Google Scholar 

  • Poly F, Threadgill D, Stintzi A (2005) Genomic diversity in Campylobacter jejuni: identification of C. jejuni 81–176-specific genes. J Clin Microbiol 43:2330–2338

    Google Scholar 

  • Quinones B, Miller WG, Bates AH, Mandrell RE (2009) Autoinducer-2 production in Campylobacter jejuni contributes to chicken colonization. Appl Environ Microbiol 75:281–285

    CAS  PubMed  Google Scholar 

  • Rathinam VA, Hoag KA, Mansfield LS (2008) Dendritic cells from C57BL/6 mice undergo activation and induce Th1-effector cell responses against Campylobacter jejuni. Microbes Infect 10:1316–1324

    CAS  PubMed  Google Scholar 

  • Rees LE, Cogan TA, Dodson AL, Birchall MA, Bailey M, Humphrey TJ (2008) Campylobacter and IFNgamma interact to cause a rapid loss of epithelial barrier integrity. Inflamm Bowel Dis 14:303–309

    PubMed  Google Scholar 

  • Rinella ES, Eversley CD, Carroll IM, Andrus JM, Threadgill DW, Threadgill DS (2006) Human epithelial-specific response to pathogenic Campylobacter jejuni. FEMS Microbiol Lett 262:236–243

    CAS  PubMed  Google Scholar 

  • Rivera-Amill V, Kim BJ, Seshu J, Konkel ME (2001) Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejunirequires a stimulatory signal. J Infect Dis 183:1607–1616

    CAS  PubMed  Google Scholar 

  • Russell RG, Blake DC Jr (1994) Cell association and invasion of Caco-2 cells by Campylobacter jejuni. Infect Immun 62:3773–3779

    CAS  PubMed  Google Scholar 

  • Russell RG, Blaser MJ, Sarmiento JI, Fox J (1989) Experimental Campylobacter jejuni infection in Macaca nemestrina. Infect Immun 57:1438–1444

    CAS  PubMed  Google Scholar 

  • Russell RG, O'Donnoghue M, Blake DC Jr, Zulty J, DeTolla LJ (1993) Early colonic damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca mulatta. J Infect Dis 168:210–215

    CAS  PubMed  Google Scholar 

  • Sellars MJ, Hall SJ, Kelly DJ (2002) Growth of Campylobacter jejunisupported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184:4187–4196

    CAS  PubMed  Google Scholar 

  • Shigematsu M, Umeda A, Fujimoto S, Amako K (1998) Spirochaete-like swimming mode of Campylobacter jejuni in a viscous environment. J Med Microbiol 47:521–526

    CAS  PubMed  Google Scholar 

  • Siebers A, Finlay BB (1996) M cells and the pathogenesis of mucosal and systemic infections. Trends Microbiol 4:22–29

    CAS  PubMed  Google Scholar 

  • Siegesmund AM, Konkel ME, Klena JD, Mixter PF (2004) Campylobacter jejuni infection of differentiated THP-1 macrophages results in interleukin 1 beta release and caspase-1-independent apoptosis. Microbiology 150:561–569

    CAS  PubMed  Google Scholar 

  • Smith JL, Bayles DO (2006) The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol 32:227–248

    CAS  PubMed  Google Scholar 

  • Song YC, Jin S, Louie H, Ng D, Lau R, Zhang Y, Weerasekera R, Al Rashid S, Ward LA, Der SD, Chan VL (2004) FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol 53:541–553

    CAS  PubMed  Google Scholar 

  • Spiller RC (2007) Role of infection in irritable bowel syndrome. J Gastroenterol 42(Suppl 17):41–47

    PubMed  Google Scholar 

  • St Michael F, Szymanski CM, Li J, Chan KH, Khieu NH, Larocque S, Wakarchuk WW, Brisson JR, Monteiro MA (2002) The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur J Biochem 269:5119–5136

    CAS  PubMed  Google Scholar 

  • Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185:2009–2016

    CAS  PubMed  Google Scholar 

  • Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C (2005) Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 73:1797–1810

    CAS  PubMed  Google Scholar 

  • Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC (2009) The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71:253–272

    CAS  PubMed  Google Scholar 

  • Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32:1022–1030

    CAS  PubMed  Google Scholar 

  • Szymanski CM, King M, Haardt M, Armstrong GD (1995) Campylobacter jejuni motility and invasion of Caco-2 cells. Infect Immun 63:4295–4300

    CAS  PubMed  Google Scholar 

  • Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70:2242–2244

    Google Scholar 

  • Takata T, Fujimoto S, Amako K (1992) Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect Immun 60:3596–3600

    CAS  PubMed  Google Scholar 

  • Thibault P, Logan SM, Kelly JF, Brisson JR, Ewing CP, Trust TJ, Guerry P (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276:34862–34870

    CAS  PubMed  Google Scholar 

  • Tracz DM, Keelan M, Ahmed-Bentley J, Gibreel A, Kowalewska-Grochowska K, Taylor DE (2005) pVir and bloody diarrhea in Campylobacter jejuni enteritis. Emerg Infect Dis 11:838–843

    CAS  PubMed  Google Scholar 

  • van Alphen LB, Bleumink-Pluym NM, Rochat KD, van Balkom BW, Wosten MM, van Putten JPM (2008a) Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell Microbiol 10:53–66

    PubMed  Google Scholar 

  • van Alphen LB, Wuhrer M, Bleumink-Pluym NM, Hensbergen PJ, Deelder AM, van Putten JPM (2008b) A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. Microbiology 154:3385–3397

    PubMed  Google Scholar 

  • Van Rhijn I, Bleumink-Pluym NM, Van Putten JPM, Van den Berg LH (2002) Campylobacter DNA is present in circulating myelomonocytic cells of healthy persons and in persons with Guillain-Barre syndrome. J Infect Dis 185:262–265

    PubMed  Google Scholar 

  • van Spreeuwel JP, Duursma GC, Meijer CJ, Bax R, Rosekrans PC, Lindeman J (1985) Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut 26:945–951

    PubMed  Google Scholar 

  • Walker RI, Caldwell MB, Lee EC, Guerry P, Trust TJ, Ruiz-Palacios GM (1986) Pathophysiology of Campylobacter enteritis. Microbiol Rev 50:81–94

    CAS  PubMed  Google Scholar 

  • Walker RI, Schmauder-Chock EA, Parker JL, Burr D (1988) Selective association and transport of Campylobacter jejuni through M cells of rabbit Peyer's patches. Can J Microbiol 34:1142–1147

    CAS  PubMed  Google Scholar 

  • Wassenaar TM, Bleumink-Pluym NM, van der Zeijst BA (1991) Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10:2055–2061

    CAS  PubMed  Google Scholar 

  • Wassenaar TM, Engelskirchen M, Park S, Lastovica A (1997) Differential uptake and killing potential of Campylobacter jejuni by human peripheral monocytes/macrophages. Med Microbiol Immunol 186:139–144

    CAS  PubMed  Google Scholar 

  • Wassenaar TM, Fry BN, van der Zeijst BA (1995) Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. Microbiology 141(Pt 1):95–101

    CAS  PubMed  Google Scholar 

  • Wassenaar TM, Wagenaar JA, Rigter A, Fearnley C, Newell DG, Duim B (2002) Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol Lett 212:77–85

    Google Scholar 

  • Watson RO, Galán JE (2005) Signal transduction in Campylobacter jejuni-induced cytokine production. Cell Microbiol 7:655–665

    CAS  PubMed  Google Scholar 

  • Watson RO, Galán JE (2008) Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog 4:e14

    PubMed  Google Scholar 

  • Watson RO, Novik V, Hofreuter D, Lara-Tejero M, Galán JE (2007) A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect Immun 75:1994–2003

    CAS  PubMed  Google Scholar 

  • Whitehouse CA, Balbo PB, Pesci EC, Cottle DL, Mirabito PM, Pickett CL (1998) Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun 66:1934–1940

    CAS  PubMed  Google Scholar 

  • Wooldridge KG, Williams PH, Ketley JM (1996) Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 21:299–305

    CAS  PubMed  Google Scholar 

  • Wösten MM, van Mourik A, van Putten JPM (2008) Regulation of genes in Campylobacter jejuni. In: Nachamkin I, Szymanski CM, Blaser MJ (eds) Campylobacter. ASM press, Washington, DC, pp 611–624

    Google Scholar 

  • Wösten MM, Parker CT, van Mourik A, Guilhabert MR, van Dijk L, van Putten JPM (2006) The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Mol Microbiol 62:278–291

    PubMed  Google Scholar 

  • Wösten MM, Wagenaar JA, van Putten JPM (2004) The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J Biol Chem 279:16214–16222

    PubMed  Google Scholar 

  • Wright JA, Grant AJ, Hurd D, Harrison M, Guccione EJ, Kelly DJ, Maskell DJ (2009) Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 155:80–94

    CAS  PubMed  Google Scholar 

  • Yao R, Burr DH, Doig P, Trust TJ, Niu H, Guerry P (1994) Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14:883–893

    CAS  PubMed  Google Scholar 

  • Yao R, Burr DH, Guerry P (1997) CheY-mediated modulation of Campylobacter jejuni virulence. Mol Microbiol 23:1021–1031

    CAS  PubMed  Google Scholar 

  • Young NM, Brisson JR, Kelly J, Watson DC, Tessier L, Lanthier PH, Jarrell HC, Cadotte N, St Michael F, Aberg E, Szymanski CM (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539

    CAS  PubMed  Google Scholar 

  • Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K, Taguchi K, Miyatake T, Furukawa K, Kobata T, Yamada M (2004) Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc Natl Acad Sci USA 101:11404–11409

    CAS  PubMed  Google Scholar 

  • Yun J, Jeon B, Barton YW, Plummer P, Zhang Q, Ryu S (2008) Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of Campylobacter jejuni. J Bacteriol 190:4512–4520

    CAS  PubMed  Google Scholar 

  • Zheng J, Meng J, Zhao S, Singh R, Song W (2008) Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. Infect Immun 76:4498–4508

    CAS  PubMed  Google Scholar 

  • Zilbauer M, Dorrell N, Boughan PK, Harris A, Wren BW, Klein NJ, Bajaj-Elliott M (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73:7281–7289

    CAS  PubMed  Google Scholar 

  • Zilbauer M, Dorrell N, Elmi A, Lindley KJ, Schuller S, Jones HE, Klein NJ, Nunez G, Wren BW, Bajaj-Elliott M (2007) A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol 9:2404–2416

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are financially supported by grants from the Netherlands Organization of Health Research and Development (ZonMW-grant 9120-6150 and VIDI-grant 917.66.330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos P. M. van Putten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Putten, J.P.M., van Alphen, L.B., Wösten, M.M.S.M., de Zoete, M.R. (2009). Molecular Mechanisms of Campylobacter Infection. In: Sasakawa, C. (eds) Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01846-6_7

Download citation

Publish with us

Policies and ethics