Skip to main content
Log in

Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Myxovirus-resistance (Mx) proteins are produced by host cells in response to type I interferons, and some members of the Mx gene family in mammals have been shown to limit replication of influenza and other viruses. According to an early report, chicken Mx1 variants encoding Asn at position 631 have antiviral activity, whereas variants with Ser at 631 lack activity in experiments evaluating Mx1 complementary DNA (cDNA) expressed ectopically in a cell line. We evaluated whether the Mx1 631 dimorphism influenced pathogenesis of highly pathogenic avian influenza virus (HPAIV) infection in chickens of two commercial broiler lines, each segregating for Asn631 and Ser631 variants. Following intranasal infection with HPAIV strain A/Chicken/Queretaro/14588-19/1995 H5N2, chickens homozygous for Asn631 allele were significantly more resistant to disease based on early mortality, morbidity, or virus shedding than Ser631 homozygotes. Higher amounts of splenic cytokine transcripts were observed in the Ser631 birds after infection, consistent with higher viral loads seen in this group and perhaps contributing to their higher morbidity. Nucleotide sequence determination of Mx1 cDNAs demonstrated that the Asn631 variants in the two chicken lines differed at several amino acid positions outside 631. In vitro experiments with a different influenza strain (low pathogenicity) failed to demonstrate an effect of Mx1 Asn631 on viral replication suggesting that in vivo responses may differ markedly from in vitro, or that choice of virus strain may be critical in demonstrating effects of chicken Mx1. Overall, these studies provide the first evidence that Mx1 has antiviral effects in chickens infected with influenza virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bacon LD, Hunt HD, Cheng HH (2001) Genetic resistance to Marek’s disease. Curr Top Microbiol Immunol 255:121–141

    PubMed  CAS  Google Scholar 

  • Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR, Barber GN (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13:129–141

    Article  PubMed  CAS  Google Scholar 

  • Balkissoon D, Staines K, McCauley J, Wood J, Young J, Kaufman J, Butter C (2007) Low frequency of the Mx allele for viral resistance predates recent intensive selection in domestic chickens. Immunogenetics 59:687–691

    Article  PubMed  CAS  Google Scholar 

  • Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, Sabourin PJ, Long JP, García-Sastre A, Tolnay AE, Albrecht R, Pyles JA, Olson PH, Aicher LD, Rosenzweig ER, Murali-Krishna K, Clark EA, Kotur MS, Fornek JL, Proll S, Palermo RE, Sabourin CL, Katze MG (2009) Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci USA 106:3455–3460

    Article  PubMed  CAS  Google Scholar 

  • Benfield CT, Lyall JW, Kochs G, Tiley LS (2008) Asparagine 631 variants of the chicken Mx protein do not inhibit influenza replication in primary chicken embryo fibroblast cells or in vitro surrogate assays. J Virol 82:7533–7539

    Article  PubMed  CAS  Google Scholar 

  • Benfield CTO, Lyall JW, Tiley LS (2010) The cytoplasmic location of chicken Mx is not the determining factor for its lack of antiviral activity. PLoS ONE 5:e12151

    Article  PubMed  Google Scholar 

  • Berlin S, Qu L, Li X, Yang N, Ellegren H (2008) Positive diversifying selection in avian Mx genes. Immunogenetics 60:689–697

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi D, Schultz U, Staeheli P (1995) The interferon-induced Mx protein of chickens lacks antiviral activity. J Interferon Cytokine Res 15:47–53

    Article  PubMed  CAS  Google Scholar 

  • Boon AC, deBeauchamp J, Hollmann A, Luke J, Kotb M, Rowe S, Finkelstein D, Neale G, Lu L, Williams RW, Webby RJ (2009) Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J Virol 83:10417–10426

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Kaiser P, Vignal A, Beaumont C (2010) Genetic control of resistance to salmonellosis and to Salmonella carrier-state in fowl: a review. Genet Sel Evol 42:11

    Article  PubMed  Google Scholar 

  • Cauthen A, Swayne DE, Sekellick MJ, Marcus PI, Suarez DL (2007) Amelioration of influenza virus pathogenesis in chickens attributed to the enhanced interferon-inducing capacity of a virus with a truncated NS1 gene. J Virol 81:1838–1847

    Article  PubMed  CAS  Google Scholar 

  • Dittmann J, Stertz S, Grimm D, Steel J, García-Sastre A, Haller O, Kochs G (2008) Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J Virol 82:3624–3631

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Staeheli P, Hufbauer M, Koerner I, Martínez-Sobrido L, Solórzano A, García-Sastre A, Haller O, Kochs G (2007) Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci USA 104:6806–6811

    Article  PubMed  CAS  Google Scholar 

  • Haller O (1981) Inborn resistance of mice to orthomyxoviruses. Curr Top Microbiol Immunol 92:25–52

    PubMed  CAS  Google Scholar 

  • Haller O, Kochs G, Weber F (2007) Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev 18:425–433

    Article  PubMed  CAS  Google Scholar 

  • Kapczynski DR, Kogut MH (2008) Measurement of avian cytokines with real time RT-PCR following infection with the avian influenza virus. Meth Mol Biol 436:127–134

    Article  CAS  Google Scholar 

  • Karupiah G, Chen JH, Mahalingam S, Nathan CF, MacMicking JD (1998) Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 188:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Ko J-H, Jin H-K, Asano A, Takada A, Ninomiya A, Kida H, Hokiyama H, Ohara M, Tsuzuki M, Nishibori M, Mizutani M, Watanabe T (2002) Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Res 12:595–601

    PubMed  CAS  Google Scholar 

  • Ko JH, Takada A, Mitsuhashi T, Agui T, Watanabe T (2004) Native antiviral specificity of chicken Mx protein depends on amino acid variation at position 631. Gen 35:119–122

    CAS  Google Scholar 

  • Koerner I, Kochs G, Kalinke U, Weiss S, Staeheli P (2007) Protective role of beta interferon in host defense against influenza A virus. J Virol 81:2025–2030

    Article  PubMed  CAS  Google Scholar 

  • Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, Wolff T, Osiak A, Levine B, Schmidt RE, García-Sastre A, Leib DA, Pekosz A, Knobeloch KP, Horak I, Virgin HW 4th (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci USA 104:1371–1376

    Article  PubMed  CAS  Google Scholar 

  • Livant EJ, Avendano S, McLeod S, Ye X, Lamont SJ, Dekkers JD, Ewald SJ (2007) MX1 exon 13 polymorphisms in broiler breeder chickens and associations with commercial traits. Genet 38:177–179

    CAS  Google Scholar 

  • Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24:954–962

    PubMed  CAS  Google Scholar 

  • Muller U, Steinhoff U, Reis LFL, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Pavlovic J, Zurcher T, Haller O, Staeheli P (1990) Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol 64:3370–3375

    PubMed  CAS  Google Scholar 

  • Pavlovic J, Arzet HA, Hefti HP, Frese M, Rost D, Ernst B, Kolb E, Staeheli P, Haller O (1995) Enhanced virus resistance of transgenic mice expressing the human MxA protein. J Virol 69:4506–4510

    PubMed  CAS  Google Scholar 

  • Peiris JS, Cheung CY, Leung CY, Nicholls JM (2009) Innate immune responses to influenza A H5N1: friend or foe? Trends Immunol 30:574–584

    Article  PubMed  CAS  Google Scholar 

  • Perrone LA, Szretter KJ, Katz JM, Mizgerd JP, Tumpey TM (2010) Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus. J Infect Dis 202:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Schmolke M, Viemann D, Roth J, Ludwig S (2009) Essential impact of NF-kappaB signaling on the H5N1 influenza A virus-induced transcriptome. J Immunol 183:5180–5189

    Article  PubMed  CAS  Google Scholar 

  • Schumacher B, Bernasconi D, Schultz U, Staeheli P (1994) The chicken Mx promoter contains an ISRE motif and confers interferon inducibility to a reporter gene in chick and monkey cells. Virology 203:144–148

    Article  PubMed  CAS  Google Scholar 

  • Sironi L, Williams JL, Moreno-Martin AM, Ramelli P, Stella A, Jianlin H, Weigend S, Lombardi G, Cordioli P, Mariani P (2008) Susceptibility of different chicken lines to H7N1 highly pathogenic avian influenza virus and the role of Mx gene polymorphism coding amino acid position 631. Virology 380:152–156

    Article  PubMed  CAS  Google Scholar 

  • Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT, Suarez DL (2002) Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Micro 40:3256–3260

    Article  CAS  Google Scholar 

  • Swayne DE, Slemons RD (2008) Using mean infectious dose of high- and low-pathogenicity avian influenza viruses originating from wild duck and poultry as one measure of infectivity and adaptation to poultry. Avian Dis 52:455–460

    Article  PubMed  Google Scholar 

  • Swayne DE, Senne DA, Beard CW (1998) Avian influenza. In: Swayne DE (ed) A laboratory manual for the isolation and identification of avian pathogens, 4th edn. American Association of Avian Pathologists, Kennett Square, pp 150–155

    Google Scholar 

  • Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM (2007) Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 81:2736–2744

    Article  PubMed  CAS  Google Scholar 

  • Szretter KJ, Gangappa S, Belser JA, Zeng H, Chen H, Matsuoka Y, Sambhara S, Swayne DE, Tumpey TM, Katz JM (2009) Early control of H5N1 influenza virus replication by the type I interferon response in mice. J Virol 83:5825–5834

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Hamada K, Sekiya S, Wakamatsu M, Namikawa T, Mizutani M, Sokawa Y (2000) 2′, 5′-oligoadenylate synthetase gene in chicken: gene structure, distribution of alleles and their expression. Biochim Biophys Acta 1494:263–268

    PubMed  CAS  Google Scholar 

  • Tumpey TM, Szretter KJ, Van Hoeven N, Katz JM, Kochs G, Haller O, García-Sastre A, Staeheli P (2007) The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J Virol 81:10818–10821

    Article  PubMed  CAS  Google Scholar 

  • Yin CG, Zhang CS, Zhang AM, Qin HW, Wang XQ, Du LX, Zhao GP (2010) Expression analyses and antiviral properties of the Beijing-You and White Leghorn myxovirus resistance gene with different amino acids at position 631. Poult Sci 89:2259–2264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Research Initiative Competitive Grant no. 2006-35205-16676 from the USDA National Institute of Food and Agriculture, and USDA Agricultural Research Service CRIS project no. 6612-32000-053. We thank Clayton Floyd and Roger Brock for animal care. We also thank Dr. Igal Pevzner and Mr. Randy Shumate of Cobb-Vantress, Inc., for the chickens, and Dr. Peter Staeheli (University of Freiburg, Freiburg, Germany) for the expression construct for recombinant chicken IFN-α. We gratefully acknowledge the technical expertise of Ms. Milla Kaltenboeck, Ms. Tracy Faulkner, Mr. Cam Greene, and Ms. Aniko Zsak.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra J. Ewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewald, S.J., Kapczynski, D.R., Livant, E.J. et al. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus. Immunogenetics 63, 363–375 (2011). https://doi.org/10.1007/s00251-010-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0509-1

Keywords

Navigation