Skip to main content

Advertisement

Log in

Evolutionary analysis of two classical MHC class I loci of the medaka fish, Oryzias latipes: haplotype-specific genomic diversity, locus-specific polymorphisms, and interlocus homogenization

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) region of the teleost medaka (Oryzias latipes) contains two classical class I loci, UAA and UBA, whereas most lower vertebrates possess or express a single locus. To elucidate the allelic diversification and evolutionary relationships of these loci, we compared the BAC-based complete genomic sequences of the MHC class I region of three medaka strains and the PCR-based cDNA sequences of two more strains and two wild individuals, representing nine haplotypes. These were derived from two geographically distinct medaka populations isolated for four to five million years. Comparison of the genomic sequences showed a marked diversity in the region encompassing UAA and UBA even between the strains derived from the same population, and also showed an ancient divergence of these loci. cDNA analysis indicated that the peptide-binding domains of both UAA and UBA are highly polymorphic and that most of the polymorphisms were established in a locus-specific manner before the divergence of the two populations. Interallelic recombination between exons 2 and 3 encoding these domains was observed. The second intron of the UAA genes contains a highly conserved region with a palindromic sequence, suggesting that this region contributed to the recombination events. In contrast, the α3 domain is extremely homogenized not only within each locus but also between UAA and UBA regardless of populations. Two lineages of the transmembrane and cytoplasmic regions are also shared by UAA and UBA, suggesting that these two loci evolved with intimate genetic interaction through gene conversion or unequal crossing over.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams EJ, Parham P (2001) Species-specific evolution of MHC class I genes in the higher primates. Immunol Rev 183:41–64

    Article  PubMed  CAS  Google Scholar 

  • Ando A, Kawata H, Shigenari A, Anzai T, Ota M, Katsuyama Y, Sada M, Goto R, Takeshima SN, Aida Y, Iwanaga T, Fujimura N, Suzuki Y, Gojobori T, Inoko H (2003) Genetic polymorphism of the swine major histocompatibility complex (SLA) class I genes, SLA-1, -2 and -3. Immunogenetics 55:583–593

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi K, Dijkstra JM, Xia C, Denda I, Ototake M, Hashimoto K, Nakanishi T (2002) Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss). J Immunol 168:260–273

    PubMed  CAS  Google Scholar 

  • Barel MT, Pizzato N, van Leeuwen D, Bouteiller PL, Wiertz EJ, Lenfant F (2003) Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class I molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation. Eur J Immunol 33:1707–1716

    Article  PubMed  CAS  Google Scholar 

  • Belov K, Deakin JE, Papenfuss AT, Baker ML, Melman SD, Siddle HV, Gouin N, Goode DL, Sargeant TJ, Robinson MD, Wakefield MJ, Mahony S, Cross JG, Benos PV, Samollow PB, Speed TP, Graves JA, Miller RD (2006) Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biol 4:e46

    Article  PubMed  CAS  Google Scholar 

  • Birch J, Murphy L, MacHugh ND, Ellis SA (2006) Generation and maintenance of diversity in the cattle MHC class I region. Immunogenetics 58:670–679

    Article  PubMed  CAS  Google Scholar 

  • Consuegra S, Megens HJ, Schaschl H, Leon K, Stet RJ, Jordan WC (2005) Rapid evolution of the MH class I locus results in different allelic compositions in recently diverged populations of Atlantic salmon. Mol Biol Evol 22:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE (2004) Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res 14:1501–1515

    Article  PubMed  CAS  Google Scholar 

  • Farah JA, Hartsuiker E, Mizuno K, Ohta K, Smith GR (2002) A 160-bp palindrome is a Rad50.Rad32-dependent mitotic recombination hotspot in Schizosaccharomyces pombe. Genetics 161:461–468

    PubMed  CAS  Google Scholar 

  • Figueroa F, Mayer WE, Sato A, Zaleska-Rutczynska Z, Hess B, Tichy H, Klein J (2001) Mhc class I genes of swordtail fishes, Xiphophorus: variation in the number of loci and existence of ancient gene families. Immunogenetics 53:695–708

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362

    Article  PubMed  CAS  Google Scholar 

  • Gruda R, Achdout H, Stern-Ginossar N, Gazit R, Betser-Cohen G, Manaster I, Katz G, Gonen-Gross T, Tirosh B, Mandelboim O (2007) Intracellular cysteine residues in the tail of MHC class I proteins are crucial for extracellular recognition by leukocyte Ig-like receptor 1. J Immunol 179:3655–3661

    PubMed  CAS  Google Scholar 

  • Gu X, Nei M (1999) Locus specificity of polymorphic alleles and evolution by a birth-and-death process in mammalian MHC genes. Mol Biol Evol 16:147–156

    PubMed  CAS  Google Scholar 

  • Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J, Forbes S, Gilbert JG, Halls K, Harrow JL, Hart E, Howe K, Jackson DK, Palmer S, Roberts AN, Sims S, Stewart CA, Traherne JA, Trevanion S, Wilming L, Rogers J, de Jong PJ, Elliott JF, Sawcer S, Todd JA, Trowsdale J, Beck S (2008) Variation analysis and gene annotation of eight MHC haplotypes: the MHC haplotype project. Immunogenetics 60:1–18

    Article  PubMed  CAS  Google Scholar 

  • Hosomichi K, Miller MM, Goto RM, Wang Y, Suzuki S, Kulski JK, Nishibori M, Inoko H, Hanzawa K, Shiina T (2008) Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity. J Immunol 181:3393–3399

    PubMed  CAS  Google Scholar 

  • Joly E, Rouillon V (2006) The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules. Biol Direct 1:2

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304

    Article  PubMed  CAS  Google Scholar 

  • Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DA, Ward FE, Ennis PD, Jackson AP, Parham P (1988) HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature 335:268–271

    Article  PubMed  CAS  Google Scholar 

  • Lukacs MF, Harstad H, Grimholt U, Beetz-Sargent M, Cooper GA, Reid L, Bakke HG, Phillips RB, Miller KM, Davidson WS, Koop BF (2007) Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC Genomics 8:251

    Article  PubMed  CAS  Google Scholar 

  • Madden DR, Gorga JC, Strominger JL, Wiley DC (1992) The three-dimensional structure of HLA-B27 at 2.1 a resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70:1035–1048

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Yonekawa H, Hamaguchi S, Sakaizumi M (1997) Geographic variation and diversity in the mitochondrial DNA of the Medaka, Oryzias latipes, as determined by restriction endonuclease analysis. Zoolog Sci 14:517–526

    Article  Google Scholar 

  • Matsuo MY, Nonaka M (2004) Repetitive elements in the major histocompatibility complex (MHC) class I region of a teleost, medaka: identification of novel transposable elements. Mech Dev 121:771–777

    Article  PubMed  CAS  Google Scholar 

  • Matsuo MY, Asakawa S, Shimizu N, Kimura H, Nonaka M (2002) Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka (Oryzias latipes). Immunogenetics 53:930–940

    Article  PubMed  CAS  Google Scholar 

  • Mayer WE, Jonker M, Klein D, Ivanyi P, van Seventer G, Klein J (1988) Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J 7:2765–2774

    PubMed  CAS  Google Scholar 

  • Mehta RB, Nonaka MI, Nonaka M (2009) Comparative genomic analysis of the major histocompatibility complex class I region in the teleost genus oryzias. Immunogenetics 61:385–399

    Article  PubMed  CAS  Google Scholar 

  • Miller KM, Li S, Ming TJ, Kaukinen KH, Schulze AD (2006) The salmonid MHC class I: more ancient loci uncovered. Immunogenetics 58:571–589

    Article  PubMed  CAS  Google Scholar 

  • Moon DA, Veniamin SM, Parks-Dely JA, Magor KE (2005) The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. J Immunol 175:6702–6712

    PubMed  CAS  Google Scholar 

  • Nag DK, Kurst A (1997) A 140-bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics 146:835–847

    PubMed  CAS  Google Scholar 

  • Ohta Y, McKinney EC, Criscitiello MF, Flajnik MF (2002) Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 168:771–781

    PubMed  CAS  Google Scholar 

  • Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685

    PubMed  CAS  Google Scholar 

  • Okamura K, Ototake M, Nakanishi T, Kurosawa Y, Hashimoto K (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7:777–790

    Article  PubMed  CAS  Google Scholar 

  • Parham P, Lawlor DA, Lomen CE, Ennis PD (1989) Diversity and diversification of HLA-A, B, C alleles. J Immunol 142:3937–3950

    PubMed  CAS  Google Scholar 

  • Pullen JK, Horton RM, Cai ZL, Pease LR (1992) Structural diversity of the classical H-2 genes: K, D, and L. J Immunol 148:953–967

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook JG, Figueroa F, Beck S (2005) A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics 6:152

    Article  PubMed  CAS  Google Scholar 

  • Sambrook JG, Russell R, Umrania Y, Edwards YJ, Campbell RD, Elgar G, Clark MS (2002) Fugu orthologues of human major histocompatibility complex genes: a genome survey. Immunogenetics 54:367–380

    Article  PubMed  CAS  Google Scholar 

  • Sammut B, Marcuz A, Pasquier LD (2002) The fate of duplicated major histocompatibility complex class Ia genes in a dodecaploid amphibian, Xenopus ruwenzoriensis. Eur J Immunol 32:1593–1604

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Dongak R, Hao L, Takezaki N, Shintani S, Aoki T, Klein J (2006) Mhc class I genes of the cichlid fish Oreochromis niloticus. Immunogenetics 58:917–928

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–586

    Article  PubMed  CAS  Google Scholar 

  • Setiamarga DH, Miya M, Yamanoue Y, Azuma Y, Inoue JG, Ishiguro NB, Mabuchi K, Nishida M (2009) Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biol Lett 5:812–816

    PubMed  Google Scholar 

  • Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178:5744–5752

    PubMed  CAS  Google Scholar 

  • Shiina T, Dijkstra JM, Shimizu S, Watanabe A, Yanagiya K, Kiryu I, Fujiwara A, Nishida-Umehara C, Kaba Y, Hirono I, Yoshiura Y, Aoki T, Inoko H, Kulski JK, Ototake M (2005) Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry. Immunogenetics 56:878–893

    Article  PubMed  CAS  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MA, Hedrick RP, Nehring RB, Stet RJ, Secombes C, Parham P (2001) Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 166:3297–3308

    PubMed  CAS  Google Scholar 

  • Suemizu H, Radosavljevic M, Kimura M, Sadahiro S, Yoshimura S, Bahram S, Inoko H (2002) A basolateral sorting motif in the MICA cytoplasmic tail. Proc Natl Acad Sci USA 99:2971–2976

    Article  PubMed  CAS  Google Scholar 

  • Takehana Y, Nagai N, Matsuda M, Tsuchiya K, Sakaizumi M (2003) Geographic variation and diversity of the cytochrome b gene in Japanese wild populations of medaka, Oryzias latipes. Zoolog Sci 20:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Takehana Y, Naruse K, Sakaizumi M (2005) Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 36:417–428

    Article  PubMed  CAS  Google Scholar 

  • Tallmadge RL, Lear TL, Antczak DF (2005) Genomic characterization of MHC class I genes of the horse. Immunogenetics 57:763–774

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Hayashi S, Matsuo MY, Nonaka MI, Kondo M, Shima A, Asakawa S, Shimizu N, Nonaka M (2005) Unprecedented intraspecific diversity of the MHC class I region of a teleost medaka, Oryzias latipes. Immunogenetics 57:420–431

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Sakaizumi M, Hata M, Sawara Y, Eah J, Kim CB, Nonaka M (2009) Dichotomous haplotypic lineages of the immunoproteasome subunit genes, PSMB8 and PSMB10, in the MHC class I region of a Teleost Medaka, Oryzias latipes. Mol Biol Evol 26:769–781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Kazuyo Takada for technical assistance in sequencing. This work was supported by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas Comparative Genomics from Ministry of Education, Culture, Sports, Science and Technology, Japan (20017009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayumi I. Nonaka.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(a) Alignment of nucleotide sequences of exon 4 encoding the α3 domain. Identical nucleotides with the first sequence are indicated by dots. The deduced amino acid sequence of the first sequence is shown above the nucleotide sequences. Only one synonymous substitution at the 32nd nucleotide is shown in gray color. Asterisks show the nucleotide substitutions shared by UAA and UBA. HNI and Kaga shown in bold are derived from the N population and others are from the S population. (b) Alignment of the regions from intron 4 to exon 7 encoding two lineages of the TM and CY region. Identical nucleotides with the first sequence are indicated by dots, and gaps are shown by dashes. Exon regions are boxed and shown in upper case, while intron regions are shown in lower case. Horizontal double-headed arrows show the duplicated regions. Brackets in introns 4 show the continuous insertions/deletions found commonly in UAA and UBA. Open box in intron 6 of Hd-rR-UAA and HNI-UAA shows the position of the insertion of ∼1.2-kb DNA transposon (sequences are not shown) (PDF 72.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonaka, M.I., Nonaka, M. Evolutionary analysis of two classical MHC class I loci of the medaka fish, Oryzias latipes: haplotype-specific genomic diversity, locus-specific polymorphisms, and interlocus homogenization. Immunogenetics 62, 319–332 (2010). https://doi.org/10.1007/s00251-010-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-010-0426-3

Keywords

Navigation