Skip to main content
Log in

Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Mining of channel catfish (Ictalurus punctatus) expressed sequence tag databases identified seven new novel immune type receptors (IpNITRs). These differed in sequence, but not structure, from previously described IpNITR1-11. IpNITR12a, 12b, 13, and 14 encode proteins containing a single variable (V)-like immunoglobulin (Ig) domain. IpNITR12a and 13 encode a transmembrane (TM) region and cytoplasmic tail (CYT) containing immunoreceptor tyrosine inhibition motifs (ITIMs). IpNITR14 contains a TM and short CYT devoid of signaling motifs and is similar in structure to IpNITR7. IpNITR12b lacks a TM and may represent an IpNITR12a splice variant. In contrast, IpNITR15a, 15b, and 16 encode two Ig domains (V-like domain 1 and V/C2-like domain 2). IpNITR15a and 15b contain TM and CYT with ITIMs. IpNITR16 appears to be a secreted form. The first V-like domains of IpNITR12-16 (except a/b pairs) share 17–32% amino acid identity with each other and with V domains of IpNITR1-11. They therefore represent five additional IpNITR V families (defined as possessing 70% or more amino acid identity). The V/C2 domains of IpNITR15a, 15b and 16 have 94–98% amino acid identity, but share 37–50% amino acid identity with corresponding V/C2 domains found in IpNITR1-4. Phylogenetic analyses indicate IpNITR12-16 are more closely related to other teleost NITRs than to IpNITR1-11. Gene mapping indicates that IpNITRs are linked, and members of the ten known IpNITR families are interspersed. IpNITR12-16 are differentially expressed in various catfish immune-type cells and preferentially up regulated in peripheral blood leukocytes by allogeneic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Chothia C, Novotny J, Bruccoleri R, Kaplus M (1985) Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol 186(3):651–663

    Article  PubMed  CAS  Google Scholar 

  • Davis RS, Ehrhardt GR, Leu CM, Hirano M, Cooper MD (2005) An extended family of Fc receptors. Eur J Immunol 35:674–680

    Article  PubMed  CAS  Google Scholar 

  • Falk N, Ravetch RV (2006) Fcγ receptors: old friends and new family members. Immunity 24:19–28

    Article  CAS  Google Scholar 

  • Hawke NA, Yoder JA, Haire RN, Mueller MG, Litman RT, Miracle AL, Stuge T, Shen L, Miller N, Litman GW (2001) Extraordinary variation in a diversified family of immune-type receptor genes. Proc Natl Acad Sci USA 98:13832–13837

    Article  PubMed  CAS  Google Scholar 

  • Hulett MD, Hogarth PM (1994) Molecular basis for Fc receptor function. Adv Immunol 57:1–127

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen I, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH (1998) Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391:703–707

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  • Litman GW, Hawke NA, Yoder JA (2001) Novel immune-type receptor genes. Immunol Rev 181:250–259

    Article  PubMed  CAS  Google Scholar 

  • Litman GW, Yoder JA, Cannon JP, Haire RN (2003) Novel Immune-type receptor genes and the origins of adaptive and innate immune recognition. Integr Comp Biol 43:331–337

    Article  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Miller NW, van Ginkel F, Bly J, Ellsaesser C, Clem LW (1987) Phylogeny of lymphocyte heterogeneity: Identification and separation of functionally distinct subpopulations of channel catfish lymphocytes with monoclonal antibodies. Dev Comp Immunol 11:737–739

    Google Scholar 

  • Miller NW, Rycyzyn MA, Wilson MR, Warr GW, Naftel JP, Clem LW (1994a) Development and characterization of channel catfish long-term B cell lines. J Immunol 152:2180–2189

    PubMed  CAS  Google Scholar 

  • Miller NW, Chinchar VG, Clem LW (1994b) Development of leukocyte cell lines from the channel catfish (Ictalurus punctatus). J Tissue Cult Methods 16:117–124

    Article  Google Scholar 

  • Miller NW, Wilson M, Bengten E, Stuge T, Warr GW, Clem LW (1998) Functional and molecular characterization of teleosts leukocytes. Immunol Rev 166:187–197

    Article  PubMed  CAS  Google Scholar 

  • Piyaviriyakul P, Kondo H, Hirono I, Aoki T (2006) A novel immune-type receptor of Japanese flounder (Paralichthys olivaceus) is expressed in both T and B lymphocytes. Fish Shellfish Immunol 22:467–476

    Article  PubMed  CAS  Google Scholar 

  • Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492

    PubMed  CAS  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  PubMed  CAS  Google Scholar 

  • Quiniou SM, Katagiri T, Miller NW, Wilson M, Wolters WR, Waldbieser GC (2004) Construction and characterization of a BAC library from a gynogenetic channel catfish Ictalurus punctatus. Genet Sel Evol 35:673–83

    Article  CAS  Google Scholar 

  • Quiniou SM, Waldbieser GC, Duke MV (2007) A first generation BAC-based physical map of the channel catfish genome. BMC Genomics 8:40

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Stuge TB, Bengten E, Wilson M, Chinchar VG, Neftel JP, Bermanke JM, Clem LW, Miller NW (2004) Identification and characterization of clonal NK-like cells from channel catfish (Ictalurus punctatus). Dev Comp Immunol 28:139–152

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Stuge TB, Zhou H, Khayat M, Barker KS, Quiniou MA, Wilson M, Bengten E, Chinchar VG, Clem LW, Miller NW (2002) Channel catfish cytotoxic cells: a mini-review. Dev Comp Immunol 26:141–149

    Article  PubMed  CAS  Google Scholar 

  • Stafford JL, Bengten E, Du Pasquier L, McIntosh RD, Quiniou SM, Clem LW, Miller NW, Wilson M (2006) A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex. Immunogenetics 58:758–773

    Article  PubMed  CAS  Google Scholar 

  • Stafford JL, Bengten E, Du Pasquier L, Miller NW, Wilson M (2007) Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors contain a putative MHC class I binding site. Immunogenetics 59:77–91

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO (2003) Vav 1 dephosphorylation by the tyrosine phosphatases SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 23:6291–6299

    Article  PubMed  CAS  Google Scholar 

  • Strong SJ, Mueller MG, Litman RT, Hawke NA, Haire RN, Miracle AL, Rast JP, Amemiya CT, Litman GW (1999) A novel multigene family encodes diversified variable regions. Proc Natl Acad Sci USA 96:15080–15085

    Article  PubMed  CAS  Google Scholar 

  • Stuge TB, Yoshida SH, Chinchar VG, Miller NW, Clem LW (1997) Cytotoxic activity generated from channel catfish peripheral blood leukocytes in mixed leukocytes cultures. Cell Immunol 177:154–161

    Article  PubMed  CAS  Google Scholar 

  • Stuge TB, Wilson MR, Zhou H, Barker KS, Bengten E, Chinchar VG, Miller NW, Clem LW (2000) Development and analysis of various clonal alloantigen-dependent cytotoxic cell lines from channel catfish. J Immunol 164:2972–2977

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Valiante NM, Phillips JH, Lanier LL, Parham P (1996) Killer cell inhibitory receptor recognition of human Leukocyte antigen (HLA) class I blocks formation of a pp36/PLC-γ signaling complex in human natural killer (NK) cell. J Exp Med 184:2243–2250

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Bengten E, Miller NW, Clem LW, Du Pasquier L, Warr GW (1997) A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci USA 94:4593–4597

    Article  PubMed  CAS  Google Scholar 

  • Wilson MR, Zhou H, Bengten E, Clem LW, Stuge TB, Warr GW, Miller NW (1998) T-cell receptors in channel catfish: structure and expression of TCR alpha and beta genes. Mol Immunol 35:545–557

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Litman GW (2000) The zebrafish fth1, slc3a2, men1, pc, fgf3 and cycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13. Gene 261(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Mueller MG, Wei S, Corliss BC, Prather DM, Willis T, Litman RT, Djeu JY, Litman GW (2001) Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc Natl Acad Sci USA 98(12):6771–6776

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Mueller MG, Nichols KM, Ristow SS, Thorgaard GH, Ota T, Litman GW (2002) Cloning novel immune-type inhibitory receptors from the rainbow trout, Oncorhynchus mykiss. Immunogenetics 54:662–670

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Litman RT, Mueller MG, Desai S, Dobrinski KP, Montgomery JS, Buzzeo MP, Ota T, Amemiya CT, Trede NS, Wei S, Djeu JY, Humphray S, Jekosch K, Hernandez Prada JA, Ostrov DA, Litman GW (2004) Resolution of the novel immune-type receptor gene cluster in zebrafish. Proc Natl Acad Sci USA 101:15706–15711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (RO1AI-19530), National Sciences Foundation (MCB-0211785), and US Department of Agriculture (2002-35204-12211). We thank Robin McIntosh for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Wilson.

Additional information

GenBank Submissions:

The sequences presented in this article have been submitted to GenBank under the following accession numbers: IpNITR12a, EF490801; IpNITR12b, EF490802; IpNITR13, EF490803; IpNITR14, EF490804; IpNITR15a, EF490805; IpNITR15b, EF490806; and IpNITR16, EF490807.

Electronic supplementary material

Below are the links to the electronic supplementary material.

251_2007_230_MOESM1_ESM.pdf

251_2007_230_MOESM2_ESM.pdf

251_2007_230_MOESM3_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evenhuis, J., Bengtén, E., Snell, C. et al. Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus . Immunogenetics 59, 661–671 (2007). https://doi.org/10.1007/s00251-007-0230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0230-x

Keywords

Navigation