Skip to main content
Log in

Organization, alternative splicing, polymorphism, and phylogenetic position of lamprey CD45 gene

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

CD45 of jawed vertebrates is a receptor-type protein tyrosine phosphatase regulating lymphocyte development and activation. To shed light on the evolution of the CD45 gene, the organization of its orthologue in the lamprey, a jawless vertebrate, was determined. Compared to its mammalian and fugu counterparts, the lamprey gene was found to be lacking several exons in the segment encoding the extracellular part of the protein. In consequence, this part contains only one instead of the two or three fibronectin type III domains typical of the mammalian molecules. The lamprey transcripts of the CD45 gene occur in several variants originating by alternative splicing, including some not observed previously in other vertebrates. Most remarkable of these are splice variants generated by the use of intra-exonic splicing signals and thus lacking one half, one third, or two thirds of an exon and yet apparently translated in the correct reading frame. The lamprey gene contains polymorphic sites not only in the segment encoding the extracellular portion but also in the segment specifying the cytoplasmic part of the molecule. Polymorphism is generated by both mutations and recombination. Some of the alleles may have persisted long enough to represent transspecies polymorphism presumably maintained by positive selection. Phylogenetic analysis suggests that ancestors of the CD45 gene may have existed before the divergence of coelomate from pseudocoelomate metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  • Anderson KL, Nelson SL, Perkin HB, Smith KA, Klemsz MJ, Torbett BE (2001) PU.1 is a lineage-specific regulator of tyrosine phosphatase CD45. J Biol Chem 276:7637–7642

    Article  PubMed  CAS  Google Scholar 

  • Ballingall KT, Waibochi L, Holmes EC, Woelk CH, MacHugh ND, Lutje V, McKeever DJ (2001) The CD45 locus in cattle: allelic polymorphism and evidence for exceptional positive natural selection. Immunogenetics 52:276–283

    Article  PubMed  CAS  Google Scholar 

  • Barclay AN, Jackson DI, Willis AC, Williams AF (1987) Lymphocyte specific heterogeneity in the rat leucocyte common antigen (T200) is due to differences in polypeptide sequences near the NH2-terminus. EMBO J 6:1259–1264

    PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:I38–I41

    Article  CAS  Google Scholar 

  • Bork P, Doolittle RF (1993) Fibronectin type III modules in the receptor phosphatase CD45 and tapeworm antigens. Protein Sci 2:1185–1187

    PubMed  CAS  Google Scholar 

  • Díaz del Pozo E, Beverley PCL, Timon M (2000) Genomic structure and sequence of the leukocyte common antigen (CD45) from the pufferfish Fugu rubripes and comparison with its mammalian homologue. Immunogenetics 51:838–846

    Article  PubMed  Google Scholar 

  • Felberg J, Johnson P (2000) Stable interdomain interaction within the cytoplasmic domain of CD45 increases enzyme stability. Biochem Biophys Res Commun 271:292–298

    Article  PubMed  CAS  Google Scholar 

  • Filip LC, Mundy NI (2004) Rapid evolution by positive Darwinian selection in the extracellular domain of the abundant lymphocyte protein CD45 in primates. Mol Biol Evol 21:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Fujiki K, Shin DH, Nakao M, Yano T (2000) Molecular cloning of carp (Cyprinus carpio) leucocyte cell-derived chemotaxin 2, glia maturation factor beta, CD45 and lysozyme C by use of suppression subtractive hybridization. Fish Shellfish Immunol 10:643–650

    Article  PubMed  CAS  Google Scholar 

  • Hall LR, Streuli M, Schlossman SF, Saito H (1988) Complete exon–intron organization of the human leukocyte common antigen (CD45) gene. J Immunol 141:2781–2787

    PubMed  CAS  Google Scholar 

  • Hansen E, Lund O, Engelbrecht J, Bohr H, Nielsen JO, Hansen J-ES, Brunak S (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J 308:801–813

    PubMed  CAS  Google Scholar 

  • Hansen E, Lund O, Rapacki K, Brunak S (1997) O-glycbase version 2.0-A revised database of O-glycosylated proteins. Nucleic Acids Res 25:278–282

    Article  PubMed  CAS  Google Scholar 

  • Hansen E, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S (1998) NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15:115–130

    Article  PubMed  CAS  Google Scholar 

  • Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137

    Article  PubMed  CAS  Google Scholar 

  • Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K, Iscove N, Koretzky G, Johnson P, Liu P, Rothstein DM, Penninger JM (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409:349–354

    Article  PubMed  CAS  Google Scholar 

  • Johnson NA, Meyer CM, Pingel JT, Thomas ML (1989) Sequence conservation in potential regulatory regions of the mouse and human-leukocyte common antigen gene. J Biol Chem 264:6220–6229

    PubMed  CAS  Google Scholar 

  • Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:152–164

    Google Scholar 

  • Justement LB (1997) The role of CD45 in signal transduction. Adv Immunol 66:1–65

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162

    Article  PubMed  CAS  Google Scholar 

  • Kountikov E, Wilson M, Quiniou S, Miller N, Clem W, Bengten E (2005) Genomic organization of the channel catfish CD45 functional gene and CD45 pseudogenes. Immunogenetics 57:374–383

    Article  PubMed  CAS  Google Scholar 

  • Kuroda N, Uinuk-ool TS, Sato A, Samonte IE, Figueroa F, Mayer WE, Klein J (2003) Identification of chemokines and a chemokine receptor in cichlid fish, shark, and lamprey. Immunogenetics 54:884–895

    PubMed  CAS  Google Scholar 

  • Leahy DJ, Hendrickson WA, Aukhil I, Erickson HP (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) Smart 4.0: towards genomic data integration. Nucleic Acids Res 32:I42–I44

    Article  Google Scholar 

  • Mayer WE, Uinuk-Ool T, Tichy H, Gartland LA, Klein J, Cooper MD (2002) Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci U S A 99:14350–14355

    Article  PubMed  CAS  Google Scholar 

  • Montoya GE, Vernot JP, Patarroyo ME (2004) Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans. Tissue Antigens 64:165–172

    Article  PubMed  CAS  Google Scholar 

  • Mustelin T, Rahmouni S, Bottini N, Alonso A (2003) Role of protein tyrosine phospatases in T cell activation. Immunol Rev 191:139–147

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Suzuki T, Ohta Y, Flajnik MF, Kasahara M (2002) The leukocyte common antigen (CD45) of the Pacific hagfish, Eptatretus stoutii: implications for the primordial function of CD45. Immunogenetics 54:286–291

    Article  PubMed  CAS  Google Scholar 

  • Nam HJ, Poy F, Krueger NX, Saito H, Frederick CA (1999) Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 97:449–457

    Article  PubMed  CAS  Google Scholar 

  • Nam HJ, Poy F, Saito H, Frederick CA (2005) Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med 201:441–452

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. Proceedings of the sixth international conference on intelligent systems for Molecular Biology (ISMB 6). AAAI Press, Menlo Park, CA, p 122

    Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Okumura M, Matthews RJ, Robb B, Litman GW, Bork P, Thomas ML (1996) Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains. J Immunol 157:1569–1575

    PubMed  CAS  Google Scholar 

  • Pedersen G, Nielsen H (1997) Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. ISMB 5:226–233

    PubMed  CAS  Google Scholar 

  • Pils B, Schultz J (2004) Evolution of the multifunctional protein tyrosine phosphatase family. Mol Biol Evol 21:625–631

    Article  PubMed  CAS  Google Scholar 

  • Powell LD, Sgroi D, Sjoberg ER, Stamenkovic I, Varki A (1993) Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem 268:7019–7027

    PubMed  CAS  Google Scholar 

  • Saga Y, Tung JS, Shen FW, Boyse EA (1986) Sequences of Ly-5 cDNA: isoform-related diversity of Ly-5 mRNA. Proc Natl Acad Sci U S A 83:6940–6944

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Furukawa K, Autero M, Gahmberg CG, Kobata A (1993) Structural study of the sugar chains of human leukocyte common antigen CD45. Biochemistry 32:12694–12704

    Article  PubMed  CAS  Google Scholar 

  • Schug J, Overton GC (1997) Technical Report CBIL-TR-1997-1001-v0.0. Computational Biology and Informatics Laboratory, School of Medicine, University of Pennsylvania, Pennsylvania

  • Shintani S, Terzic J, Sato A, Saraga-Babic M, O'hUigin C, Tichy H, Klein J (2000) Do lampreys have lymphocytes? The Spi evidence. Proc Natl Acad Sci U S A 97:7417–7422

    Article  PubMed  CAS  Google Scholar 

  • Symons A, Willis AC, Barclay AN (1999) Domain organization of the extracellular region of CD45. Protein Eng 12:885–892

    Article  PubMed  CAS  Google Scholar 

  • Thomas ML (1989) The leukocyte common antigen family. Annu Rev Immunol 7:339–369

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge IS, Thomas ML (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 12:85–116

    Article  PubMed  CAS  Google Scholar 

  • Uemura K, Yokota Y, Kozutsumi Y, Kawasaki T (1996) A unique CD45 glycoform recognized by the serum mannan-binding protein in immature thymocytes. J Biol Chem 271:4581–4584

    Article  PubMed  CAS  Google Scholar 

  • Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J (2002) Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci U S A 99:14356–14361

    Article  PubMed  CAS  Google Scholar 

  • Virts E, Barritt D, Raschke WC (1998) Expression of the CD45 isoforms lacking exons 7, 8 and 10. Mol Immunol 35:167–176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Masatoshi Nei for his support of our work and Kathleen Seasholtz for editorial assistance. JK thanks Jongmin Nam for his unsparing help in dealing with HAL's caprices. NN was supported by grant GM20293 from the National Institutes of Health to MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uinuk-ool, T., Nikolaidis, N., Sato, A. et al. Organization, alternative splicing, polymorphism, and phylogenetic position of lamprey CD45 gene. Immunogenetics 57, 607–617 (2005). https://doi.org/10.1007/s00251-005-0019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0019-8

Keywords

Navigation