Skip to main content
Log in

Genomic organization of the channel catfish CD45 functional gene and CD45 pseudogenes

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

CD45 is a transmembrane protein tyrosine phosphatase, which in mammals plays an important role in T and B cell receptor and cytokine signaling. Recently, a catfish cDNA was shown to contain all characteristic CD45 features: an alternatively spliced amino-terminus, a cysteine-rich region, three fibronectin domains, a transmembrane region, and two phosphotyrosine phosphatase domains. However, analyses of CD45 cDNAs from various catfish lymphoid cell lines demonstrated that catfish CD45 is unique in that it contains a large number of alternatively spliced exons. Sequence analyses of cDNAs derived from the catfish clonal B cell line 3B11 indicated that this cell line expresses up to 13 alternatively spliced exons. Furthermore, sequence similarity among the alternatively spliced exons suggested duplication events. To establish the exact number and organization of alternatively spliced exons, a bacterial artificial chromosome library was screened, and the catfish functional CD45 gene plus six CD45 pseudogenes were sequenced. The catfish functional CD45 gene spans 37 kb and contains 49 exons. In comparison, the human and pufferfish CD45 genes consist of 34 and 30 exons, respectively. This difference in the otherwise structurally conserved catfish gene is due to the presence of 18 alternatively spliced exons that were likely derived through several duplication events. In addition, duplication events were also likely involved in generating the six pseudogenes, truncated at the 3′ ends. A similarly 3′ truncated CD45 pseudogene is also present in the pufferfish genome, suggesting that this specific CD45 gene duplication occurred before catfish and pufferfish diverged (∼400 million years ago).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Bengten E, Quiniou SM, Stuge TB, Katagiri T, Miller NW, Clem LW, Warr GW, Wilson M (2002) The IgH locus of the channel catfish, Ictalurus punctatus, contains multiple constant region gene sequences: different genes encode heavy chains of membrane and secreted IgD. J Immunol 169:2488–2497

    CAS  PubMed  Google Scholar 

  • Chang HL, Lefrancois L, Zaroukian MH, Esselman WJ (1991) Developmental expression of CD45 alternate exons in murine T cells. Evidence of additional alternate exon use. J Immunol 147:1687–1693

    CAS  PubMed  Google Scholar 

  • Diaz del Pozo E, Beverley PC, Timon M (2000) Genomic structure and sequence of the leukocyte common antigen (CD45) from the pufferfish Fugu rubripes and comparison with its mammalian homologue. Immunogenetics 51:838–846

    Article  CAS  PubMed  Google Scholar 

  • DiMartino JF, Hayes P, Saga Y, Lee JS (1994) A novel initiator/promoter element within the CD45 upstream region. Int Immunol 6:1279–1283

    CAS  PubMed  Google Scholar 

  • Fang KS, Sabe H, Saito H, Hanafusa H (1994) Comparative study of three protein-tyrosine phosphatases. Chicken protein-tyrosine phosphatase lambda dephosphorylates c-Src tyrosine 527. J Biol Chem 269:20194–20200

    CAS  PubMed  Google Scholar 

  • Felberg J, Johnson P (1998) Characterization of recombinant CD45 cytoplasmic domain proteins. Evidence for intramolecular and intermolecular interactions. J Biol Chem 273:17839–17845

    Article  CAS  PubMed  Google Scholar 

  • Felberg J, Johnson P (2000) Stable interdomain interaction within the cytoplasmic domain of CD45 increases enzyme stability. Biochem Biophys Res Commun 271:292–298

    Article  CAS  PubMed  Google Scholar 

  • Fujiki K, Shin DH, Nakao M, Yano T (2000) Molecular cloning of carp (Cyprinus carpio) leucocyte cell-derived chemotaxin 2, glia maturation factor beta, CD45 and lysozyme C by use of suppression subtractive hybridisation. Fish Shellfish Immunol 10:643–650

    Article  CAS  PubMed  Google Scholar 

  • Hall LR, Streuli M, Schlossman SF, Saito H (1988) Complete exon–intron organization of the human leukocyte common antigen (CD45) gene. J Immunol 141:2781–2787

    CAS  PubMed  Google Scholar 

  • Hayami-Noumi K, Tsuchiya T, Moriyama Y, Noumi T (2000) Intra- and intermolecular interactions of the catalytic domains of human CD45 protein tyrosine phosphatase. FEBS Lett 468:68–72

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S (1992) Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol 4:382–388

    CAS  PubMed  Google Scholar 

  • Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21:107–137

    Article  CAS  PubMed  Google Scholar 

  • Justement LB (1997) The role of CD45 in signal transduction. Adv Immunol 66:1–65

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kountikov E, Wilson M, Miller N, Clem W, Bengten E (2004) Organization and expression of thirteen alternatively spliced exons in catfish CD45 homologs. Dev Comp Immunol 28:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  • Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472

    CAS  PubMed  Google Scholar 

  • Nagata T, Suzuki T, Ohta Y, Flajnik MF, Kasahara M (2002) The leukocyte common antigen (CD45) of the Pacific hagfish, Eptatretus stoutii: implications for the primordial function of CD45. Immunogenetics 54:286–291

    Article  CAS  PubMed  Google Scholar 

  • Okumura M, Matthews RJ, Robb B, Litman GW, Bork P, Thomas ML (1996) Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains. J Immunol 157:1569–1575

    CAS  PubMed  Google Scholar 

  • Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ (2001) CD45: new jobs for an old acquaintance. Nat Immunol 2:389–396

    CAS  PubMed  Google Scholar 

  • Quiniou SM, Katagiri T, Miller NW, Wilson M, Wolters WR, Waldbieser GC (2003) Construction and characterization of a BAC library from a gynogenetic channel catfish Ictalurus punctatus. Genet Sel Evol 35:673–683

    Article  CAS  PubMed  Google Scholar 

  • Saga Y, Tung JS, Shen FW, Boyse EA (1987) Alternative use of 5′ exons in the specification of Ly-5 isoforms distinguishing hematopoietic cell lineages. Proc Natl Acad Sci U S A 84:5364–5368

    CAS  PubMed  Google Scholar 

  • Saga Y, Tung JS, Shen FW, Pancoast TC, Boyse EA (1988) Organization of the Ly-5 gene. Mol Cell Biol 8:4889–4895

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hillier L, Staden R, Halloran N, Green P, Thierry-Mieg J, Qiu L et al (1992) The C. elegans genome sequencing project: a beginning. Nature 356:37–41

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Timon M, Beverley PC (2001) Structural and functional analysis of the human CD45 gene (PTPRC) upstream region: evidence for a functional promoter within the first intron of the gene. Immunology 102:180–189

    Article  CAS  PubMed  Google Scholar 

  • Tsujikawa K, Uchino Y, Ichijo T, Furukawa T, Yamamoto H (2000) Detection of CD45iota mRNA in murine Th1 but not Th2 clones. Immunobiology 201:506–514

    CAS  PubMed  Google Scholar 

  • Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J (2002) Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci U S A 99:14356–14361

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B, Gilligan P, Brenner S (2000) Fugu: a compact vertebrate reference genome. FEBS Lett 476:3–7

    Article  CAS  PubMed  Google Scholar 

  • Virts E, Barritt D, Raschke WC (1998) Expression of CD45 isoforms lacking exons 7, 8 and 10. Mol Immunol 35:167–176

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Bengten E, Miller NW, Clem LW, Du Pasquier L, Warr GW (1997) A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci U S A 94:4593–4597

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Weiss A (2002) Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol 3:764–771

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kacskovics I, Pan Q, Liberles DA, Geli J, Davis SK, Rabbani H, Hammarstrom L (2002) Artiodactyl IgD: the missing link. J Immunol 169:4408–4416

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01AI-19530), the National Science Foundation (MCB-0211785), and the US Department of Agriculture (2003-35205-12829). The pufferfish data were provided freely by the Fugu Genome Consortium for use in this publication only. The experiments performed comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Bengtén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kountikov, E., Wilson, M., Quiniou, S. et al. Genomic organization of the channel catfish CD45 functional gene and CD45 pseudogenes. Immunogenetics 57, 374–383 (2005). https://doi.org/10.1007/s00251-005-0797-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0797-z

Keywords

Navigation