Skip to main content
Log in

Design of inhibitor peptide sequences based on the interfacial knowledge of the protein G-IgG crystallographic complex and their binding studies with IgG

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Protein–protein interactions (PPI) have emerged as valuable targets in medicinal chemistry due to their key roles in important biological processes. The modulation of PPI by small peptides offers an excellent opportunity to develop drugs against human diseases. Here, we exploited the knowledge of the binding interface of the IgG-protein G complex (PDB:1FCC) for designing peptides that can inhibit these complexes. Herein, we have designed several closely related peptides, and the comparison of results from experiments and computational studies indicated that all the peptides bind close to the expected binding site on IgG and the complexes are stable. A minimal sequence consisting of 11 amino acids (P5) with binding constants in the range of 100 nM was identified. We propose that the main affinity differences across the series of peptides arose from the presence of polar amino acid residues. Further, the molecular dynamic studies helped to understand the dynamic properties of complexes in terms of flexibility of residues and structural stability at the interface. The ability of P5 to compete with the protein G in recognizing IgG can help in the detection and purification of antibodies. Further, it can serve as a versatile tool for a better understanding of protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl EJS (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  • Aggarwal S, Tanwar N, Singh A, Munde M (2022) Formation of protamine and Zn-insulin assembly: exploring biophysical consequences. ACS Omega 7:41044–41057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer WR, Schulz MD (2020) Isothermal titration calorimetry: practical approaches and current applications in soft matter. Soft Matter 16:8760–8774

    Article  CAS  PubMed  Google Scholar 

  • Arouri A, Garidel P, Kliche W, Blume A (2007) Hydrophobic interactions are the driving force for the binding of peptide mimotopes and Staphylococcal protein A to recombinant human IgG1. Eur Biophys J 36:647–660

    Article  CAS  PubMed  Google Scholar 

  • Benyamini H, Friedler A (2010) Using peptides to study protein-protein interactions. Future Med Chem 2:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Berg T (2003) Modulation of protein-protein interactions with small organic molecules. Angew Chem Int Ed Engl 42:2462–2481

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Swarnkar RK, Hussain B, Sahoo SK, Pradeepkumar PI, Patwari GN, Anand R (2014) Fluorescence quenching studies of γ-butyrolactone binding protein (CprB) from Streptomyces coelicolor A3(2). J Phys Chem B 118:10035–10042

    Article  CAS  PubMed  Google Scholar 

  • Camproux AC, Gautier R, Tufféry P (2004) A hidden Markov model derived structural alphabet for proteins. J Mol Biol 339:591–605

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari A, Chaudhari M, Mahera S, Saiyed Z, Nathani NM, Shukla S, Patel D, Patel C, Joshi M, Joshi CG (2021) In-silico analysis reveals lower transcription efficiency of C241T variant of SARS-CoV-2 with host replication factors MADP1 and hnRNP-1. Inform Med Unlocked 25:100670

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui HK, Qing J, Guo Y, Wang YJ, Cui LJ, He TH, Zhang L, Liu L (2013) Stapled peptide-based membrane fusion inhibitors of hepatitis C virus. Bioorg Med Chem 21:3547–3554

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL, Ultsch MH, de Vos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Dhiman A, Purohit R (2023) Profiling the disintegration of BRPs released by massive wasp stings using serratiopeptidase: an in-silico insight. Comput Biol Med 159:106951

    Article  CAS  PubMed  Google Scholar 

  • Falkenberg C, Björck L, Akerström B (1992) Localization of the binding site for streptococcal protein G on human serum albumin. Identification of a 5.5-kilodalton protein G binding albumin fragment. Biochemistry 31:1451–1457

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang Q, Wang T (2017) Drug target protein-protein interaction networks: a systematic perspective. Biomed Res Int 2017:1–13

    Google Scholar 

  • Fry DC (2015) Targeting protein-protein interactions for drug discovery. Methods Mol Biol 1278:93–106

    Article  CAS  PubMed  Google Scholar 

  • Ganoth A, Friedman R, Nachliel E, Gutman M (2006) A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides. Biophys J 91:2436–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Aggarwal S, Munde M (2023) New insights into the role of ligand-binding modes in GC-DNA condensation through thermodynamic and spectroscopic studies. ACS Omega 8:4554–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Chen Y, Rozak DA, Bryan PN, Orban J (2007) An artificially evolved albumin binding module facilitates chemical shift epitope mapping of GA domain interactions with phylogenetically diverse albumins. Protein Sci 16:1490–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendeberg L, Tashiro M, Tejero R, Lyons BA, Uhlén M, Montelione GT, Nilsson B (1996) The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding. Biochemistry 35:22–31

    Article  CAS  PubMed  Google Scholar 

  • Johansson MU, Frick IM, Nilsson H, Kraulis PJ, Hober S, Jonasson P, Linhult M, Nygren PA, Uhlén M, Björck L, Drakenberg T, Forsén S, Wikström M (2002) Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem 277:8114–8120

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Garg A, Raghava GP (2007) PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett 14:626–631

    Article  CAS  PubMed  Google Scholar 

  • Kotlyar M, Pastrello C, Malik Z, Jurisica I (2019) IID 2018 update: context-specific physical protein–protein interactions in human, model organisms and domesticated species. Nucleic Acids Res 47:D581–D589

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Sood D, Tomar R, Chandra R (2019) Antimicrobial peptide designing and optimization employing large-scale flexibility analysis of protein-peptide fragments. ACS Omega 4:21370–21380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lage K (2014) Protein–protein interactions and genetic diseases: the interactome. Biochim Biophys Acta (BBA) Mol Basis Dis 1842:1971–1980

    Article  CAS  Google Scholar 

  • Lejon S, Frick IM, Björck L, Wikström M, Svensson S (2004) Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem 279:42924–42928

    Article  CAS  PubMed  Google Scholar 

  • Maupetit J, Derreumaux P, Tufféry P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31:726–738

    Article  CAS  PubMed  Google Scholar 

  • Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muguruma K, Fujita K, Fukuda A, Kishimoto S, Sakamoto S, Arima R, Ito M, Kawasaki M, Nakano S, Ito S, Shimizu K, Taguchi A, Takayama K, Taniguchi A, Ito Y, Hayashi Y (2019) Kinetics-based structural requirements of human immunoglobulin G binding peptides. ACS Omega 4:14390–14397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee N, Bhunia D, Garai PK, Mondal P, Barman S, Ghosh S (2023) Designed novel nuclear localizing anticancer peptide targets p53 negative regulator MDM2 protein. J Pept Sci 30:e3535

    Article  PubMed  Google Scholar 

  • Nosrati M, Solbak S, Nordesjö O, Nissbeck M, Dourado DFAR, Andersson KG, Housaindokht MR, Löfblom J, Virtanen A, Danielson UH, Flores SC (2017) Insights from engineering the Affibody-Fc interaction with a computational-experimental method. Protein Eng Des Sel 30:593–601

    Article  CAS  PubMed  Google Scholar 

  • Ojha R, Pareek A, Pandey RK, Prusty D, Prajapati VK (2019) Strategic development of a next-generation multi-epitope vaccine to prevent nipah virus zoonotic infection. ACS Omega 4:13069–13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan CP, Muiño PL, Barkley MD, Callis PR (2011) Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment. J Phys Chem B 115:3245–3253

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–163

    Article  CAS  PubMed  Google Scholar 

  • Rahman MR, Islam T, Shahjaman M, Zaman T, Faruquee HM, Jamal MAHM, Huq F, Quinn JMW, Moni MA (2019) Discovering biomarkers and pathways shared by Alzheimer’s disease and ischemic stroke to identify novel therapeutic targets. Medicina 55:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagawa T, Oda M, Morii H, Takizawa H, Kozono H, Azuma T (2005) Conformational changes in the antibody constant domains upon hapten-binding. Mol Immunol 42:9–18

    Article  CAS  PubMed  Google Scholar 

  • Sauer-Eriksson AE, Kleywegt GJ, Uhlén M, Jones TA (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3:265–278

    Article  CAS  PubMed  Google Scholar 

  • Tanwar N, Munde M (2018) Thermodynamic and conformational analysis of the interaction between antibody binding proteins and IgG. Int J Biol Macromol 112:1084–1092

    Article  CAS  PubMed  Google Scholar 

  • Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, Van Dijk M, De Vries SJ, Bonvin AMJJ (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428:720–725

    Article  PubMed  Google Scholar 

  • VanderSluis B, Costanzo M, Billmann M, Ward HN, Myers CL, Andrews BJ, Boone C (2018) Integrating genetic and protein-protein interaction networks maps a functional wiring diagram of a cell. Curr Opin Microbiol 45:170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Gao L, Shull AY, Teng Y (2016) Stapled peptides: providing the best of both worlds in drug development. Future Med Chem 8:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Hamilton AD (2005) Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 44:4130–4163

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A, Heck S, Curreli F, Goger M, Cowburn D, Freed EO, Debnath AK (2008) A cell-penetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 378:565–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from DST SERB (ECR/2016/000942), UPEII JNU, and DST Purse. We also thank AIRF for instrument facility.

Author information

Authors and Affiliations

Authors

Contributions

Neetu Tanwar and Soumya Aggarwal performed the experimental study. Manoj Munde conceived the idea and supervised the project. Rupal Ojha and Vijay Kumar Prajapati contributed to the computational study. All the authors analysed the data and contributed to the writing and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Munde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 149 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, N., Ojha, R., Aggarwal, S. et al. Design of inhibitor peptide sequences based on the interfacial knowledge of the protein G-IgG crystallographic complex and their binding studies with IgG. Eur Biophys J 53, 159–170 (2024). https://doi.org/10.1007/s00249-024-01704-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-024-01704-0

Keywords

Navigation