Skip to main content

Peptides and Peptide Analogs to Inhibit Protein-Protein Interactions

  • Chapter
  • First Online:
Protein Targeting Compounds

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 917))

Abstract

Protein-protein interactions are governed by relatively few amino acid residues at the binding interface. Peptides derived from these protein regions may serve as mimics of one of the interaction partners in structural studies or as inhibitors to disrupt the respective interaction and investigate its biological consequences. Inhibitory peptides may also be lead structures for drug development if the respective protein-protein interaction is essential for a pathogen or disease mechanism. Binding peptides may be systematically derived from one of the binding partners or found in the screen of combinatorial peptide libraries. Molecular modelling based on structural data helps to refine existing peptides or even design novel binding peptides. This chapter gives an outline of the binding peptide discovery process and subsequent chemical modifications to further enhance affinity and specificity and to increase stability against degradation in vivo. Examples from the past three decades illustrate the great diversity of applications for protein binding peptides and peptide analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Bag-1L:

BCL2-associated athanogene

BCL2:

B-cell lymphoma 2

BIR3:

Baculovirus inhibitor of apoptosis protein 3

BLI:

Biolayer interferometry

Boc:

tert-Butoxycarbonyl-

BSA:

Bovine serum albumin

CDK:

Cyclin-dependent kinase

CXCL8:

CXC-class chemokine ligand 8, interleukin-8

CXCR1:

CXC-class chemokine receptor, IL8RA

DIABLO:

Direct IAP binding protein with low pI, Smac

DIC:

Diisopropylcarbodiimide

DMF:

N,N-Dimethylformamide

EZH2:

Enhancer of zeste homolog 2

Fmoc:

Fluorenylmethyloxycarbonyl-

GPCR:

G-protein coupled receptor

GRP78:

Glucose responsive protein 78

HBTU:

N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium

HLA:

Human leukocyte antigen

HOBt:

Hydroxybenzotriazole

ITC:

Isothermal titration calorimetry

ML:

Multi-leucine

NMR:

Nuclear magnetic resonance

OBOC:

One-bead-one-compound

ORI:

Origin of replication

PACE4:

Paired basic amino acid cleaving enzyme 4

PC:

Proprotein convertase

PCNA:

Proliferating cell nuclear antigen

PCR:

Polymerase chain reaction

PDB:

Protein Data Bank

PSSPCL:

Positional scanning-synthetic peptide combinatorial library

PTH1R:

parathyroid hormone 1 receptor

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

RCSB:

Research Collaboratory for Structural Bioinformatics

SET:

Conserved domain in Su(var)3-9, Enhancer of zeste and Drosophila Trithorax proteins

Smac:

Second mitochondria-derived activator of caspases, DIABLO

SPPS:

Solid-phase peptide synthesis

SPR:

Surface plasmon resonance

TAR:

Transactivator response element

Tat:

Transactivator of transcription

tBu:

tert-butyl-

XIAP:

X-linked inhibitor of apoptosis

References

  1. Ren R, Mayer B, Cicchetti P, Baltimore D (1993) Identification of a ten-amino acid proline-rich SH3 binding site. Science 259(5098):1157–1161. doi:10.1126/science.8438166

    Article  CAS  PubMed  Google Scholar 

  2. Stanfield RL, Wilson IA (1995) Protein-peptide interactions. Curr Opin Struct Biol 5(1):103–113. doi:http://dx.doi.org/10.1016/0959-440X(95)80015-S

    Article  CAS  PubMed  Google Scholar 

  3. Neduva V, Russell RB (2006) Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol 17(5):465–471. doi:http://dx.doi.org/10.1016/j.copbio.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  4. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009. doi:nature06526 [pii] 10.1038/nature06526

    Article  CAS  PubMed  Google Scholar 

  5. Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295(5553):321–324. doi:10.1126/science.1064987

    Article  CAS  PubMed  Google Scholar 

  6. Girrbach M, Meliciani I, Waterkotte B, Berthold S, Oster A, Brurein F, Strunk T, Wadhwani P, Berensmeier S, Wenzel W, Schmitz K (2014) A fluorescence polarization assay for the experimental validation of an in silico model of the chemokine CXCL8 binding to receptor-derived peptides. Phys Chem Chem Phys: PCCP 16(17):8036–8043. doi:10.1039/c3cp53850h

    Article  CAS  PubMed  Google Scholar 

  7. Smadbeck J, Peterson MB, Zee BM, Garapaty S, Mago A, Lee C, Giannis A, Trojer P, Garcia BA, Floudas CA (2014) De novo peptide design and experimental validation of histone methyltransferase inhibitors. PLoS One 9(4), e95535. doi:10.1371/journal.pone.0095535

    Article  PubMed  CAS  Google Scholar 

  8. Fuchs S, Kasher R, Balass M, Scherf T, Harel M, Fridkin M, Sussman JL, Katchalski-Katzir E (2003) The binding site of acetylcholine receptor. Ann N Y Acad Sci 998(1):93–100. doi:10.1196/annals.1254.011

    Article  CAS  PubMed  Google Scholar 

  9. Maddalo D, Neeb A, Jehle K, Schmitz K, Muhle-Goll C, Shatkina L, Walther TV, Bruchmann A, Gopal SM, Wenzel W, Ulrich AS, Cato AC (2012) A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death. PLoS One 7(10), e45690. doi:10.1371/journal.pone.0045690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Attwood MR, Borkakoti N, Bottomley GA, Conway EA, Cowan I, Fallowfield AG, Handa BK, Jones PS, Keech E, Kirtland SJ, Williams G, Wilson FX (1996) Identification and characterisation of an inhibitor of interleukin-8: a receptor based approach. Bioorg Med Chem Lett 6(15):1869–1874

    Article  CAS  Google Scholar 

  11. Attwood MR, Conway EA, Dunsdon RM, Greening JR, Handa BK, Jones PS, Jordan SC, Keech E, Wilson FX (1997) Peptide based inhibitors of interleukin-8: structural simplification and enhanced potency. Bioorg Med Chem Lett 7(4):429–432. doi:10.1016/S0960-894x(97)00036-X

    Article  CAS  Google Scholar 

  12. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem 268(11):8256–8260

    CAS  PubMed  Google Scholar 

  13. Sundstrom M, White RL, de Parseval A, Sastry KJ, Morris G, Grant CK, Elder JH (2008) Mapping of the CXCR4 binding site within variable region 3 of the feline immunodeficiency virus surface glycoprotein. J Virol 82(18):9134–9142. doi:10.1128/JVI.00394-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zee RVD, Eden WV, Meloen RH, Noordzij A, Van Embden JDA (1989) Efficient mapping and characterization of a T cell epitope by the simultaneous synthesis of multiple peptides. Eur J Immunol 19(1):43–47. doi:10.1002/eji.1830190108

    Article  PubMed  Google Scholar 

  15. Frank R (1992) Spot-synthesis – an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48(42):9217–9232. doi:10.1016/S0040-4020(01)85612-X

    Article  CAS  Google Scholar 

  16. Hilpert K, Hansen G, Wessner H, Schneider-Mergener J, Höhne W (2000) Characterizing and optimizing protease/peptide inhibitor interactions, a new application for spot synthesis. J Biochem 128(6):1051–1057

    Article  CAS  PubMed  Google Scholar 

  17. Smith GP (1985) Filamentous fusion phage – novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. doi:10.1126/science.4001944

    Article  CAS  PubMed  Google Scholar 

  18. Freudl R, Macintyre S, Degen M, Henning U (1986) Cell-surface exposure of the outer-membrane protein OmpA of Escherichia coli K-12. J Mol Biol 188(3):491–494. doi:10.1016/0022-2836(86)90171-3

    Article  CAS  PubMed  Google Scholar 

  19. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. doi:10.1038/Nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  20. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in-vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91(19):9022–9026. doi:10.1073/pnas.91.19.9022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pioszak AA, Parker NR, Gardella TJ, Xu HE (2009) Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem 284(41):28382–28391. doi:10.1074/jbc.M109.022905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kontopidis G, Wu S-Y, Zheleva DI, Taylor P, McInnes C, Lane DP, Fischer PM, Walkinshaw MD (2005) Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design. Proc Natl Acad Sci U S A 102(6):1871–1876. doi:10.1073/pnas.0406540102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408(6815):1004–1008

    Article  CAS  PubMed  Google Scholar 

  24. Vanhee P, Reumers J, Stricher F, Baeten L, Serrano L, Schymkowitz J, Rousseau F (2010) PepX: a structural database of non-redundant protein-peptide complexes. Nucleic Acids Res 38(Database issue):D545–D551. doi:10.1093/nar/gkp893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Das AA, Sharma OP, Kumar MS, Krishna R, Mathur PP (2013) PepBind: a comprehensive database and computational tool for analysis of protein–peptide interactions. Genomics Proteomics Bioinform 11(4):241–246. doi:http://dx.doi.org/10.1016/j.gpb.2013.03.002

    Article  Google Scholar 

  26. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18(2):188–199. doi:10.1016/j.str.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  27. Kasher R, Balass M, Scherf T, Fridkin M, Fuchs S, Katchalski-Katzir E (2001) Design and synthesis of peptides that bind α-bungarotoxin with high affinity. Chem Biol 8(2):147–155. doi:10.1016/s1074-5521(00)90063-2

    Article  CAS  PubMed  Google Scholar 

  28. Doytchinova I, Petkov P, Dimitrov I, Atanasova M, Flower DR (2011) HLA-DP2 binding prediction by molecular dynamics simulations. Protein Sci 20(11):1918–1928. doi:10.1002/pro.732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  CAS  PubMed  Google Scholar 

  30. Orry AJ, Wallace BA (2000) Modeling and docking the endothelin G-protein-coupled receptor. Biophys J 79(6):3083–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang X, Wang Z, Dong W, Ling L, Yang H, Chen R (2003) Modeling and docking of the three-dimensional structure of the human melanocortin 4 receptor. J Protein Chem 22(4):335–344

    Article  CAS  PubMed  Google Scholar 

  32. Ruan CH, Wu J, Ruan KH (2005) A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor. BMC Biochem 6:23. doi:10.1186/1471-2091-6-23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9(6):548–554. doi:http://dx.doi.org/10.1016/j.cbpa.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  34. Young KH, Ozenberger BA (1995) Investigation of ligand binding to members of the cytokine receptor family within a microbial system. Ann N Y Acad Sci 766(1):279–281. doi:10.1111/j.1749-6632.1995.tb26676.x

    Article  CAS  PubMed  Google Scholar 

  35. Crnković-Mertens I, Bulkescher J, Mensger C, Hoppe-Seyler F, Hoppe-Seyler K (2010) Isolation of peptides blocking the function of anti-apoptotic Livin protein. Cell Mol Life Sci 67(11):1895–1905. doi:10.1007/s00018-010-0300-3

    Article  PubMed  CAS  Google Scholar 

  36. Merrifield RB (1963) Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149. doi:10.1021/Ja00897a025

    Article  CAS  Google Scholar 

  37. Hruby VJ, Barstow LE, Linharrt T (1972) New machine for automated solid phase peptide synthesis. Anal Chem 44(2):343–350. doi:10.1021/ac60310a004

    Article  CAS  PubMed  Google Scholar 

  38. Mäde V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212. doi:10.3762/bjoc.10.118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Carpino LA, Han GY (1970) 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92(19):5748–5749. doi:10.1021/ja00722a043

    Article  CAS  Google Scholar 

  40. Lax R (2013) The future of peptide development in the pharmaceutical industry. Phar Manufacturing: Int Pept Rev 10–15. http://www.peptidereview.com/Issues.htm

  41. Bacsa B, Desai B, Dibó G, Kappe CO (2006) Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J Pept Sci 12(10):633–638. doi:10.1002/psc.771

    Article  CAS  PubMed  Google Scholar 

  42. Murray JK, Gellman SH (2007) Parallel synthesis of peptide libraries using microwave irradiation. Nat Protoc 2(3):624–631. doi:10.1038/nprot.2007.23

    Article  CAS  PubMed  Google Scholar 

  43. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    Article  CAS  PubMed  Google Scholar 

  44. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95(12):6705–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Atherton E, Bury C, Sheppard RC, Williams BJ (1979) Stability of fluorenylemthoxycarbonylamino groups in peptide synthesis. Cleavage by hydrogenolysis and by dipolar aprotic solvents. Tetrahedron Lett 20(32):3041–3042. doi:http://dx.doi.org/10.1016/S0040-4039(00)71007-0

    Article  Google Scholar 

  46. Atherton E, Sheppard RC (1987) In: Udenfriend S, Meienhofer J (eds) The peptides, vol 9. Academic, New York, pp 1–38

    Google Scholar 

  47. Albericio F (2004) Developments in peptide and amide synthesis. Curr Opin Chem Biol 8(3):211–221. doi:10.1016/j.cbpa.2004.03.002. doi:10.1016/j.cbpa.2004.03.002 S1367593104000444 [pii]

    Article  CAS  PubMed  Google Scholar 

  48. Geysen HM, Meloen RH, Barteling SJ (1984) Use of peptide-synthesis to probe viral-antigens for epitopes to a resolution of a single amino-acid. Proc Natl Acad Sci U S A 81(13):3998–4002. doi:10.1073/pnas.81.13.3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports – principles and applications. J Immunol Methods 267(1):13–26, doi:S0022175902001370 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Winkler DH, Hilpert K, Brandt O, Hancock RW (2009) Synthesis of peptide arrays using SPOT-technology and the CelluSpots-method. In: Cretich M, Chiari M (eds) Peptide microarrays, vol 570, Methods in molecular biology™. Springer, Humana Press, Berlin, pp 157–174. doi:10.1007/978-1-60327-394-7_5

    Google Scholar 

  51. Breitling F, Nesterov A, Stadler V, Felgenhauer T, Bischoff FR (2009) High-density peptide arrays. Mol Biosyst 5(3):224–234. doi:10.1039/b819850k

    Article  CAS  PubMed  Google Scholar 

  52. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  53. Falsey JR, Renil M, Park S, Li S, Lam KS (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem 12(3):346–353. doi:10.1021/bc000141q

    Article  CAS  PubMed  Google Scholar 

  54. Furka A, Sebestyen F, Asgedom M, Dibo G (1991) General-method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37(6):487–493

    Article  CAS  PubMed  Google Scholar 

  55. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354(6348):82–84. doi:10.1038/354082a0

    Article  CAS  PubMed  Google Scholar 

  56. Nair SA, Kim MH, Warren SD, Choi S, Songyang Z, Cantley LC, Hangauer DG (1995) Identification of efficient pentapeptide substrates for the tyrosine kinase pp60c-src. J Med Chem 38(21):4276–4283. doi:10.1021/jm00021a017

    Article  CAS  PubMed  Google Scholar 

  57. Wallace A, Koblan KS, Hamilton K, Marquis-Omer DJ, Miller PJ, Mosser SD, Omer CA, Schaber MD, Cortese R, Oliff A, Gibbs JB, Pessi A (1996) Selection of potent inhibitors of farnesyl-protein transferase from a synthetic tetrapeptide combinatorial library. J Biol Chem 271(49):31306–31311. doi:10.1074/jbc.271.49.31306

    Article  CAS  PubMed  Google Scholar 

  58. Dixon S, Ziebart KT, He Z, Jeddeloh M, Yoo CL, Wang X, Lehman A, Lam KS, Toney MD, Kurth MJ (2006) Aminodeoxychorismate synthase inhibitors from one-bead one-compound combinatorial libraries: “Staged” inhibitor design. J Med Chem 49(25):7413–7426. doi:10.1021/jm0609869

    Article  CAS  PubMed  Google Scholar 

  59. St. Hilaire PM, Alves LC, Herrera F, Renil M, Sanderson SJ, Mottram JC, Coombs GH, Juliano MA, Juliano L, Arevalo J, Meldal M (2002) Solid-phase library synthesis, screening, and selection of tight-binding reduced peptide bond inhibitors of a recombinant Leishmania mexicana cysteine protease B. J Med Chem 45(10):1971–1982. doi:10.1021/jm0110901

    Article  CAS  PubMed  Google Scholar 

  60. Drabovich AP, Diamandis EP (2010) Combinatorial peptide libraries facilitate development of multiple reaction monitoring assays for low-abundance proteins. J Proteome Res 9(3):1236–1245. doi:10.1021/pr900729g

    Article  CAS  PubMed  Google Scholar 

  61. Kumaresan PR, Devaraj S, Huang W, Lau EY, Liu R, Lam KS, Jialal I (2013) Synthesis and characterization of a novel inhibitor of C-reactive protein–mediated proinflammatory effects. Metab Syndr Relat Disord 11(3):177–184. doi:10.1089/met.2012.0123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. doi:10.1016/j.mimet.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  63. Levesque C, Fugere M, Kwiatkowska A, Couture F, Desjardins R, Routhier S, Moussette P, Prahl A, Lammek B, Appel JR, Houghten RA, D’Anjou F, Dory YL, Neugebauer W, Day R (2012) The multi-Leu peptide inhibitor discriminates between PACE4 and furin and exhibits antiproliferative effects on prostate cancer cells. J Med Chem 55(23):10501–10511. doi:10.1021/jm3011178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43(1):46–58. doi:10.1002/anie.200300626

    Article  CAS  Google Scholar 

  65. Pinilla C, Appel JR, Borras E, Houghten RA (2003) Advances in the use of synthetic combinatorial chemistry: mixture-based libraries. Nat Med 9(1):118–122. doi:http://www.nature.com/nm/journal/v9/n1/suppinfo/nm0103-118_S1.html

    Article  CAS  PubMed  Google Scholar 

  66. Zuckermann RN, Martin EJ, Spellmeyer DC, Stauber GB, Shoemaker KR, Kerr JM, Figliozzi GM, Goff DA, Siani MA (1994) Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J Med Chem 37(17):2678–2685. doi:10.1021/jm00043a007

    Article  CAS  PubMed  Google Scholar 

  67. Ostergaard S, Holm A (1997) Peptomers: a versatile approach for the preparation of diverse combinatorial peptidomimetic bead libraries. Mol Divers 3(1):17–27. doi:10.1023/A:1009698507588

    Article  CAS  PubMed  Google Scholar 

  68. Murray JK, Farooqi B, Sadowsky JD, Scalf M, Freund WA, Smith LM, Chen J, Gellman SH (2005) Efficient synthesis of a β-peptide combinatorial library with microwave irradiation. J Am Chem Soc 127(38):13271–13280. doi:10.1021/ja052733v

    Article  CAS  PubMed  Google Scholar 

  69. Kappe CO (2002) High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 6(3):314–320. doi:http://dx.doi.org/10.1016/S1367-5931(02)00306-X

    Article  CAS  PubMed  Google Scholar 

  70. Bolton AE, Hunter WM (1973) The labelling of proteins to high specific radioactivities by conjugation to a (125)I-containing acylating agent. Application to the radioimmunoassay. Biochem J 133(3):529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hermanson GT (ed) (2008) Bioconjugate techniques, 2nd edn. Academic, London

    Google Scholar 

  72. Schwarzer D, Cole PA (2005) Protein semisynthesis and expressed protein ligation: chasing a protein’s tail. Curr Opin Chem Biol 9(6):561–569. doi:http://dx.doi.org/10.1016/j.cbpa.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  73. Macmillan D (2006) Evolving strategies for protein synthesis converge on native chemical ligation. Angew Chem Int Ed 45(46):7668–7672. doi:10.1002/anie.200602945

    Article  CAS  Google Scholar 

  74. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89. doi:10.1038/nbt765

    Article  CAS  PubMed  Google Scholar 

  75. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382. doi:10.1021/cb800025k

    Article  CAS  PubMed  Google Scholar 

  76. Parthasarathy R, Subramanian S, Boder ET (2007) Sortase A as a novel molecular “stapler” for sequence-specific protein conjugation. Bioconjug Chem 18(2):469–476. doi:10.1021/bc060339w

    Article  CAS  PubMed  Google Scholar 

  77. Yin J, Straight PD, McLoughlin SM, Zhou Z, Lin AJ, Golan DE, Kelleher NL, Kolter R, Walsh CT (2005) Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 102(44):15815–15820. doi:10.1073/pnas.0507705102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Graves DJ, Su HJ, Addya S, Surrey S, Fortina P (2002) Four-laser scanning confocal system for microarray analysis. BioTechniques 32(2):346–348, 350, 352, 354

    CAS  PubMed  Google Scholar 

  79. Lim C, Cho H, Choo J, Neff S, Jungbauer A, Kumada Y, Katoh S, Lee E (2009) Fluorescence-based peptide screening using ligand peptides directly conjugated to a thiolated glass surface. Biomed Microdevices 11(3):663–669. doi:10.1007/s10544-008-9276-2

    Article  CAS  PubMed  Google Scholar 

  80. Renil M, Ferreras M, Delaisse JM, Foged NT, Meldal M (1998) PEGA supports for combinatorial peptide synthesis and solid-phase enzymatic library assays. J Pept Sci: Off Publ Eur Pept Soc 4(3):195–210. doi:10.1002/(SICI)1099-1387(199805)4:3<195::AID-PSC141>3.0.CO;2-R

    Article  CAS  Google Scholar 

  81. Astle JM, Simpson LS, Huang Y, Reddy MM, Wilson R, Connell S, Wilson J, Kodadek T (2010) Seamless bead to microarray screening: rapid identification of the highest affinity protein ligands from large combinatorial libraries. Chem Biol 17(1):38–45. doi:10.1016/j.chembiol.2009.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marani MM, Martínez Ceron MC, Giudicessi SL, de Oliveira E, Côté S, Erra-Balsells R, Albericio F, Cascone O, Camperi SA (2008) Screening of one-bead-one-peptide combinatorial library using red fluorescent dyes. Presence of positive and false positive beads. J Comb Chem 11(1):146–150. doi:10.1021/cc800145c

    Article  CAS  Google Scholar 

  83. Hintersteiner M, Buehler C, Uhl V, Schmied M, Müller J, Kottig K, Auer M (2009) Confocal nanoscanning, bead picking (CONA): PickoScreen microscopes for automated and quantitative screening of one-bead one-compound libraries. J Comb Chem 11(5):886–894. doi:10.1021/cc900059q

    Article  CAS  PubMed  Google Scholar 

  84. Gast R, Glokler J, Hoxter M, Kiess M, Frank R, Tegge W (1999) Method for determining protein kinase substrate specificities by the phosphorylation of peptide libraries on beads, phosphate-specific staining, automated sorting, and sequencing. Anal Biochem 276(2):227–241. doi:10.1006/abio.1999.4285

    Article  CAS  PubMed  Google Scholar 

  85. Needels MC, Jones DG, Tate EH, Heinkel GL, Kochersperger LM, Dower WJ, Barrett RW, Gallop MA (1993) Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc Natl Acad Sci U S A 90(22):10700–10704

    Google Scholar 

  86. Hwang SH, Lehman A, Cong X, Olmstead MM, Lam KS, Lebrilla CB, Kurth MJ (2004) OBOC small-molecule combinatorial library encoded by halogenated mass-tags. Org Lett 6(21):3829–3832. doi:10.1021/Ol048408e

    Article  CAS  PubMed  Google Scholar 

  87. Marcon L, Battersby BJ, Ruhmann A, Ford K, Daley M, Lawrie GA, Trau M (2010) ‘On-the-fly’ optical encoding of combinatorial peptide libraries for profiling of protease specificity. Mol BioSyst 6(1):225–233. doi:10.1039/b909087h

    Article  CAS  PubMed  Google Scholar 

  88. Heerma W, Versluis C, de Koster CG, Kruijtzer JA, Zigrovic I, Liskamp RM (1996) Comparing mass spectrometric characteristics of peptides and peptoids. Rapid Commun Mass Spectrom 10(4):459–464

    Article  CAS  PubMed  Google Scholar 

  89. Wang P, Arabaci G, Pei D (2001) Rapid sequencing of library-derived peptides by partial edman degradation and mass spectrometry. J Comb Chem 3(3):251–254. doi:10.1021/cc000102l

    Article  CAS  PubMed  Google Scholar 

  90. Chait BT, Wang R, Beavis RC, Kent SBH (1993) Protein ladder sequencing. Science 262(5130):89–92. doi:10.1126/science.8211132

    Article  CAS  PubMed  Google Scholar 

  91. Thakkar A, Cohen AS, Connolly MD, Zuckermann RN, Pei D (2009) High-throughput sequencing of peptoids and peptide-peptoid hybrids by partial Edman degradation and mass spectrometry. J Comb Chem. doi:10.1021/cc8001734

    PubMed  PubMed Central  Google Scholar 

  92. Liu RW, Mark J, Lam KS (2002) A novel peptide-based encoding system for “one-bead one-compound” peptidomimetic and small molecule combinatorial libraries. J Am Chem Soc 124(26):7678–7680. doi:10.1021/Ja026421t

    Article  CAS  PubMed  Google Scholar 

  93. Paulick MG, Hart KM, Brinner KM, Tjandra M, Charych DH, Zuckermann RN (2006) Cleavable hydrophilic linker for one-bead-one-compound sequencing of oligomer libraries by tandem mass spectrometry. J Comb Chem 8(3):417–426

    Article  CAS  PubMed  Google Scholar 

  94. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  95. Reynolds JA (1979) Interaction of divalent antibody with cell surface antigens. Biochemistry 18(2):264–269. doi:10.1021/bi00569a004

    Article  CAS  PubMed  Google Scholar 

  96. Adams GP, McCartney JE, Tai M-S, Oppermann H, Huston JS, Stafford WF, Bookman MA, Fand I, Houston LL, Weiner LM (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 53(17):4026–4034

    CAS  PubMed  Google Scholar 

  97. Adams GP, Tai M-S, McCartney JE, Marks JD, Stafford WF, Houston LL, Huston JS, Weiner LM (2006) Avidity-mediated enhancement of in vivo tumor targeting by single-chain Fv dimers. Clin Cancer Res 12(5):1599–1605. doi:10.1158/1078-0432.ccr-05-2217

    Article  CAS  PubMed  Google Scholar 

  98. Carrithers MD, Lerner MR (1996) Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors. Chem Biol 3(7):537–542. doi:http://dx.doi.org/10.1016/S1074-5521(96)90144-1

    Article  CAS  PubMed  Google Scholar 

  99. Aggarwal S, Harden JL, Denmeade SR (2006) Synthesis and screening of a random dimeric peptide library using the one-bead−one-dimer combinatorial approach. Bioconjug Chem 17(2):335–340. doi:10.1021/bc0502659

    Article  CAS  PubMed  Google Scholar 

  100. Kubas H, Schäfer M, Bauder-Wüst U, Eder M, Oltmanns D, Haberkorn U, Mier W, Eisenhut M (2010) Multivalent cyclic RGD ligands: influence of linker lengths on receptor binding. Nucl Med Biol 37(8):885–891. doi:10.1016/j.nucmedbio.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  101. Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T (2008) A peptoid “antibody surrogate” that antagonizes VEGF receptor 2 activity. J Am Chem Soc 130(17):5744–5752. doi:10.1021/ja711193x

    Article  CAS  PubMed  Google Scholar 

  102. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48(38):6974–6998. doi:10.1002/anie.200900942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Athanassiou Z, Patora K, Dias RL, Moehle K, Robinson JA, Varani G (2007) Structure-guided peptidomimetic design leads to nanomolar beta-hairpin inhibitors of the Tat-TAR interaction of bovine immunodeficiency virus. Biochemistry 46(3):741–751. doi:10.1021/bi0619371

    Article  CAS  PubMed  Google Scholar 

  104. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305(5689):1466–1470. doi:10.1126/science.1099191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baek S, Kutchukian PS, Verdine GL, Huber R, Holak TA, Lee KW, Popowicz GM (2011) Structure of the stapled p53 peptide bound to Mdm2. J Am Chem Soc 134(1):103–106. doi:10.1021/ja2090367

    Article  PubMed  CAS  Google Scholar 

  106. Smith AB, Charnley AK, Hirschmann R (2010) Pyrrolinone-based peptidomimetics. “Let the Enzyme or Receptor be the Judge”. Acc Chem Res 44(3):180–193. doi:10.1021/ar1001186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gordon DJ, Tappe R, Meredith SC (2002) Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Aβ1–40 fibrillogenesis. J Pept Res 60(1):37–55. doi:10.1034/j.1399-3011.2002.11002.x

    Article  CAS  PubMed  Google Scholar 

  108. Hess S, Ovadia O, Shalev DE, Senderovich H, Qadri B, Yehezkel T, Salitra Y, Sheynis T, Jelinek R, Gilon C, Hoffman A (2007) Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability. J Med Chem 50(24):6201–6211. doi:10.1021/jm070836d

    Article  CAS  PubMed  Google Scholar 

  109. Werle M, Bernkop-Schnürch A (2006) Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30(4):351–367. doi:10.1007/s00726-005-0289-3

    Article  CAS  PubMed  Google Scholar 

  110. Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H (1996) Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αVβ3 antagonists. J Am Chem Soc 118(32):7461–7472. doi:10.1021/ja9603721

    Article  CAS  Google Scholar 

  111. Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9(8):471–501. doi:10.1002/psc.491

    Article  CAS  PubMed  Google Scholar 

  112. Grauer A, Konig B (2009) Peptidomimetics – a versatile route to biologically active compounds. Eur J Org Chem 30:5099–5111. doi:10.1002/ejoc.200900599

    Article  CAS  Google Scholar 

  113. Di L (2014) Strategic approaches to optimizing peptide ADME properties. AAPS J 1–10. doi: 10.1208/s12248-014-9687-3

    Google Scholar 

  114. Harris AG (1994) Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut 35(3 Suppl):S1–S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics 4:58–69. doi:http://dx.doi.org/10.1016/j.euprot.2014.05.003

    Article  CAS  Google Scholar 

  116. Kwan JC, Taori K, Paul VJ, Luesch H (2009) Lyngbyastatins 8-10, elastase inhibitors with cyclic depsipeptide scaffolds isolated from the marine cyanobacterium Lyngbya semiplena. Mar Drugs 7(4):528–538. doi:10.3390/md7040528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ueda H, Manda T, Matsumoto S, Mukumoto S, Nishigaki F, Kawamura I, Shimomura K (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J Antibiot 47(3):315–323

    Article  CAS  PubMed  Google Scholar 

  118. Ikai K, Takesako K, Shiomi K, Moriguchi M, Umeda Y, Yamamoto J, Kato I, Naganawa H (1991) Structure of aureobasidin A. J Antibiot 44(9):925–933

    Article  CAS  PubMed  Google Scholar 

  119. Radhakrishnan V, Song Y-S, Thiruvengadam D (2008) Romidepsin (depsipeptide) induced cell cycle arrest, apoptosis and histone hyperacetylation in lung carcinoma cells (A549) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Biomed Pharmacother 62(2):85–93. doi:http://dx.doi.org/10.1016/j.biopha.2007.06.002

    Article  CAS  Google Scholar 

  120. Saijo K, Katoh T, Shimodaira H, Oda A, Takahashi O, Ishioka C (2012) Romidepsin (FK228) and its analogs directly inhibit phosphatidylinositol 3-kinase activity and potently induce apoptosis as histone deacetylase/phosphatidylinositol 3-kinase dual inhibitors. Cancer Sci 103(11):1994–2001. doi:10.1111/cas.12002

    Article  CAS  PubMed  Google Scholar 

  121. Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK et al (1992) Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci U S A 89(20):9367–9371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gademann K, Hintermann T, Schreiber JV (1999) Beta-peptides: twisting and turning. Curr Med Chem 6(10):905–925

    CAS  PubMed  Google Scholar 

  123. Holder JR, Bauzo RM, Xiang Z, Scott J, Haskell-Luevano C (2003) Design and pharmacology of peptoids and peptide-peptoid hybrids based on the melanocortin agonists core tetrapeptide sequence. Bioorg Med Chem Lett 13(24):4505–4509

    Article  CAS  PubMed  Google Scholar 

  124. Groner B, Weber A, Mack L (2012) Increasing the range of drug targets. Bioengineered 3(6):320–325. doi:10.4161/bioe.21272

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ono K, Takeuchi K, Ueda H, Morita Y, Tanimura R, Shimada I, Takahashi H (2014) Structure-based approach to improve a small-molecule inhibitor by the use of a competitive peptide ligand. Angew Chem Int Ed 53(10):2597–2601. doi:10.1002/anie.201310749

    Article  CAS  Google Scholar 

  126. Seethala R (2000) Fluorescence polarization competition immunoassay for tyrosine kinases. Methods 22(1):61–70. doi:http://dx.doi.org/10.1006/meth.2000.1037

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helmer, D., Schmitz, K. (2016). Peptides and Peptide Analogs to Inhibit Protein-Protein Interactions. In: Böldicke, T. (eds) Protein Targeting Compounds. Advances in Experimental Medicine and Biology, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-32805-8_8

Download citation

Publish with us

Policies and ethics