Skip to main content
Log in

Kinetic and thermodynamic modeling of a voltage-gated sodium channel

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Like all biological and chemical reactions, ion channel kinetics are highly sensitive to changes in temperature. Therefore, it is prudent to investigate channel dynamics at physiological temperatures. However, most ion channel investigations are performed at room temperature due to practical considerations, such as recording stability and technical limitations. This problem is especially severe for the fast voltage-gated sodium channel, whose activation kinetics are faster than the time constant of the standard patch-clamp amplifier at physiological temperatures. Thus, biologically detailed simulations of the action potential generation evenly scale the kinetic models of voltage-gated channels acquired at room temperature. To quantitatively study voltage-gated sodium channels' temperature sensitivity, we recorded sodium currents from nucleated patches extracted from the rat's layer five neocortical pyramidal neurons at several temperatures from 13.5 to 30 °C. We use these recordings to model the kinetics of the voltage-gated sodium channel as a function of temperature. We show that the temperature dependence of activation differs from that of inactivation. Furthermore, the data indicate that the sustained current has a different temperature dependence than the fast current. Our kinetic and thermodynamic analysis of the current provided a numerical model spanning the entire temperature range. This model reproduced vital features of channel activation and inactivation. Furthermore, the model also reproduced action potential dependence on temperature. Thus, we provide an essential building block for the generation of biologically detailed models of cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be available upon a request to corresponding author. Model code is available from ModelDB (note to reviewers: model code will be deposited on acceptance of article).

References

  • Allen TJA, Mikala G (1998) Effects of temperature on human L-type cardiac Ca2+ channels expressed in Xenopus oocytes. Pflugers Arch Eur J Physiol 436:238–247

    Article  CAS  Google Scholar 

  • Almog M, Korngreen A (2009) Characterization of voltage-gated Ca2+ conductances in layer 5 neocortical pyramidal neurons from rats. PLoS ONE 4:e4841

    Article  Google Scholar 

  • Almog M, Korngreen A (2014) A quantitative description of dendritic conductances and its application to dendritic excitation in layer 5 pyramidal neurons. J Neurosci 34:182–196

    Article  CAS  Google Scholar 

  • Almog M, Korngreen A (2016) Is realistic neuronal modeling realistic? J Neurophysiol. https://doi.org/10.1152/jn.00360.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Almog M, Barkai T, Lampert A, Korngreen A (2018) Voltage-gated sodium channels in neocortical pyramidal neurons display cole-moore activation kinetics. Front Cell Neurosci 12:187

    Article  Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift Für Phys Chemie 4U:226–248

    Article  Google Scholar 

  • Axon Instruments I (1998) The Axon CNS Guide. Mol Devices, 1–298

  • Bar-Yehuda D, Ben-Porat H, Korngreen A, Bar-Yehuda D (2008) Dendritic excitability during increased synaptic activity in rat neocortical L5 pyramidal neurons. Eur J Neurosci 28:2183–2194

    Article  Google Scholar 

  • Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge, UK, New York

    Book  Google Scholar 

  • Chadda KR, Jeevaratnam K, Lei M, Huang CLH (2017) Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes. Pflugers Arch Eur J Physiol 469:629–641

    Article  CAS  Google Scholar 

  • Collins CA, Rojas E (1982) Temperature dependence of the sodium channel gating kinetics in the node of Ranvier. Q J Exp Physiol 67:41–55

    Article  CAS  Google Scholar 

  • Decoursey TE, Cherny VV (1998) Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J Gen Physiol 112:503–522

    Article  CAS  Google Scholar 

  • DeMaegd ML, Stein W (2020) Temperature-robust activity patterns arise from coordinated axonal Sodium channel properties. PLoS Comput Biol 16:1–25

    Article  Google Scholar 

  • Egri C, Ruben PC (2012) A hot topic: temperature sensitive sodium channelopathies. Channels. https://doi.org/10.4161/chan.19827

    Article  PubMed  Google Scholar 

  • Egri C, Vilin YY, Ruben PC (2012) A thermoprotective role of the sodium channel β 1 subunit is lost with the β 1(C121W) mutation. Epilepsia 53:494–505

    Article  CAS  Google Scholar 

  • Frankenhaeuser B, Moore LE (1963) The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J Physiol 169:431–437

    Article  CAS  Google Scholar 

  • Gold C, Henze DA, Koch C (2007) Using extracellular action potential recordings to constrain compartmental models. J Comput Neurosci 23:39–58

    Article  Google Scholar 

  • Gurkiewicz M, Korngreen A (2007) A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS Comput Biol 3:e169

    Article  Google Scholar 

  • Gurkiewicz M, Korngreen A, Waxman SG, Lampert A (2011) Kinetic modeling of nav1.7 provides insight into erythromelalgia-associated F1449V mutation. J Neurophysiol 105:1546–1557

    Article  CAS  Google Scholar 

  • Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107

    Article  CAS  Google Scholar 

  • Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Comput 12:995–1007

    Article  CAS  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    Article  CAS  Google Scholar 

  • Hsu CL, Zhao X, Milstein AD, Spruston N (2018) Persistent sodium current mediates the steep voltage dependence of spatial coding in hippocampal pyramidal neurons. Neuron 99:147-162.e8

    Article  CAS  Google Scholar 

  • Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996–1002

    Article  CAS  Google Scholar 

  • Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730–3742

    Article  Google Scholar 

  • Keren N, Bar-yehuda D, Korngreen A (2009) Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones. J Physiol 587:1413–1437

    Article  CAS  Google Scholar 

  • Kim JA, Connors BW (2012) High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front Cell Neurosci 6:1–12

    CAS  Google Scholar 

  • Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525(Pt 3):621–639

    Article  CAS  Google Scholar 

  • Korogod SM, Demianenko LE (2017) Temperature effects on non-TRP ion channels and neuronal excitability. Opera Medica Physiol 3:84–92

    Google Scholar 

  • Kuo JJ, Lee RH, Zhang L, Heckman CJ (2006) Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones. J Physiol 574:819–834

    Article  CAS  Google Scholar 

  • Markram H et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492

    Article  CAS  Google Scholar 

  • Milburn T, Saint DA, Chung SH (1995) The temperature dependence of conductance of the sodium channel: Implications for mechanisms of ion permeation. Recept Channels 3:201–211

    CAS  PubMed  Google Scholar 

  • Misra SN, Kahlig KM, George AL (2008) Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia 49:1535–1545

    Article  CAS  Google Scholar 

  • Ranjan R, Logette E, Marani M, Herzog M, Tâche V, Scantamburlo E, Buchillier V, Markram H (2019) A kinetic map of the homomeric voltage-gated potassium channel (Kv) family. Front Cell Neurosci. https://doi.org/10.3389/fncel.2019.00358

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimann M, Anastassiou C, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–390

    Article  CAS  Google Scholar 

  • Rosen AD (2001) Nonlinear temperature modulation of sodium channel kinetics in GH3 cells. Biochim Biophys Acta - Biomembr 1511:391–396

    Article  CAS  Google Scholar 

  • Sather W, Dieudonne S, MacDonald JF, Ascher P (1992) Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 450:643–672

    Article  CAS  Google Scholar 

  • Stafstrom CE (2007) Persistent sodium current and its role in epilepsy. Epilepsy Curr 7:15–22

    Article  Google Scholar 

  • Stover BJ, Eyring H, Johnson FH (1974) The theory of rate processes in biology and medicine. Wiley and Sons, Chichester, Sussex

    Google Scholar 

  • Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518

    Article  CAS  Google Scholar 

  • Thomas EA, Hawkins RJ, Richards KL, Xu R, Gazina EV, Petrou S (2009) Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Ann Neurol 66:219–226

    Article  CAS  Google Scholar 

  • Weight FF, Erulkar SD (1976) Synaptic transmission and effects of temperature at the squid giant synapse. Nature 261:720–722

    Article  CAS  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi JI, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855–858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Israel Science Foundation to AK (#225/20).

Funding

This work was supported by grants from the Israel Science Foundation to AK (#225/20).

Author information

Authors and Affiliations

Authors

Contributions

AK and MA designed the study, performed the experiments, and analyzed the data. NDK and AK drafted and revised the manuscript. All authors read and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Alon Korngreen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almog, M., Degani-Katzav, N. & Korngreen, A. Kinetic and thermodynamic modeling of a voltage-gated sodium channel. Eur Biophys J 51, 241–256 (2022). https://doi.org/10.1007/s00249-022-01591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-022-01591-3

Keywords

Navigation