Skip to main content

Advertisement

Log in

A Mathematical Model of the Human Cardiac Na+ Channel

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Sodium ion channel is a membrane protein that plays an important role in excitable cells, as it is responsible for the initiation of action potentials. Understanding the electrical characteristics of sodium channels is essential in predicting their behavior under different physiological conditions. We investigated several Markov models for the human cardiac sodium channel NaV1.5 to derive a minimal mathematical model that describes the reported experimental data obtained using major voltage clamp protocols. We obtained simulation results for peak current–voltage relationships, the voltage dependence of normalized ion channel conductance, steady-state inactivation, activation and deactivation kinetics, fast and slow inactivation kinetics, and recovery from inactivation kinetics. Good agreement with the experimental data provides us with the mechanisms of the fast and slow inactivation of the human sodium channel and the coupling of its inactivation states to the closed and open states in the activation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aiba T, Shimizu W, Inagaki M, Noda T, Miyoshi S, Ding WG, Zankov DP, Toyoda F, Matsuura H, Horie M, Sunagawa K (2005) Cellular and ionic mechanism for drug-induced long QT syndrome and effectiveness of verapamil. J Am Coll Cardiol 45:300–307

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590

    Article  CAS  PubMed  Google Scholar 

  • Bähring R, Boland LM, Varghese A, Gebauer M, Pongs O (2001) Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels. J Physiol 535:65–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70:549–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko VE (2014) A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS ONE 9:e89113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko VE, Bett GCL, Rasmusson RL (2004a) A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle. Am J Physiol Heart Circ Physiol 286:H1154–H1169

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko VE, Rasmusson RL (2010) Transmural heterogeneity of repolarization and Ca2+ handling in a model of mouse ventricular tissue. Am J Physiol Heart Circ Physiol 299:H454–H469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko VE, Shilnikov AL (2017) Bursting dynamics in the normal and failing hearts. Sci Rep 7:5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarenko VE, Szigeti GP, Bett GCL, Kim SJ, Rasmusson RL (2004b) Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1378–H1403

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2014) Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol 54:317–338

    Article  CAS  PubMed  Google Scholar 

  • Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566–569

    Article  CAS  PubMed  Google Scholar 

  • Clancy CE, Rudy Y (2002) Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208–1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol Heart Circ Physiol 275:H301–H321

    Article  CAS  Google Scholar 

  • Edwards AG, Grandi E, Hake JE, Patel S, Li P, Miyamoto S, Omens JH, Heller Brown J, Bers DM, McCulloch AD (2014) Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle. Circ Arrhythm Electrophysiol 7:1205–1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, AnGourfinkel I, Brice A, Le Guern E, Moulard B, Chaigne D, Buresi C, Malafosse A (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS + 2. Nat Genet 24:343–345

    Article  CAS  PubMed  Google Scholar 

  • Faber GM, Silva J, Livshitz L, Rudy Y (2007) Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J 92:1522–1543

    Article  CAS  PubMed  Google Scholar 

  • Fink M, Noble D (2009) Markov models for ion channels: versatility versus identifiability and speed. Philos Trans A Math Phys Eng Sci 367:2161–2179

    Article  PubMed  Google Scholar 

  • Fozzard HA (1992) Afterdepolarizations and triggered activity. Basic Res Cardiol 87(Suppl 2):105–113

    CAS  PubMed  Google Scholar 

  • Grandi E, Morotti S, Ginsburg KS, Severi S, Bers DM (2010) Interplay of voltage and Ca-dependent inactivation of L-type Ca current. Prog Biophys Mol Biol 103:44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandi E, Pasqualini FS, Bers DM (2010) A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 48:112–121

    Article  CAS  PubMed  Google Scholar 

  • Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ (2015) Cell-specific cardiac electrophysiology models. PLoS Comput Biol 11:e1004242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haufe V, Cordeiro JM, Zimmer T, Wu YS, Schiccitano S, Benndorf K, Dumaine R (2005) Contribution of neuronal sodium channels to the cardiac fast sodium current is greater in dog heart Purkinje fibers than in ventricles. Cardiovasc Res 65:117–127

    Article  CAS  PubMed  Google Scholar 

  • Henry H, Rappel WJ (2004) The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model. Chaos 14:172–182

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine LA, Jafri MS, Winslow RL (1999) Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation. Biophys J 76:1868–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology. I. Cellular physiology, 2nd edn. Springer, New York. Chapter 1.3

    Book  Google Scholar 

  • Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  PubMed  Google Scholar 

  • Krogh-Madsen T, Sobie EA, Christini DJ (2016) Improving cardiomyocytes model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms. J Physiol 594:2525–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran O, Conti F, Tammaro P (2003) Sodium channel heterologous expression in mammalian cells and the role of the endogenous β1-subunits. Neurosci Lett 336:175–179

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TP, Wang DW, Rhodes TH, George AL Jr (2008) Divergent biophysical defects caused by mutant sodium channels in dilated cardiomyopathy with arrhythmia. Circ Res 102:364–371

    Article  CAS  PubMed  Google Scholar 

  • O’Leary ME, Chen LQ, Kallen RG, Horn R (1995) Molecular link between activation and inactivation of sodium channels. J Gen Physiol 106:641–658

    Article  PubMed  Google Scholar 

  • Petkova-Kirova PS, London B, Salama G, Rasmusson RL, Bondarenko VE (2012) Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α. Am J Physiol Heart Circ Physiol 302:H934–H952

    Article  CAS  PubMed  Google Scholar 

  • Remme CA (2013) Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol 591(Pt 17):4099–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozier K, Bondarenko VE (2017) Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. Am J Physiol Cell Physiol 312:C595–C623

    Article  PubMed  Google Scholar 

  • Rozier K, Bondarenko VE (2018) Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 314:H643–H658

    PubMed  Google Scholar 

  • Vecchietti S, Rivolta I, Severi S, Napolitano C, Priori SG, Cavalcanti S (2006) Computer simulation of wild-type and mutant human cardiac Na+ current. Med Biol Eng Comput 44:35–44

    Article  PubMed  Google Scholar 

  • Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circ Res 86:E91–E97

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Bondarenko VE, Qu YJ, Bett GCL, Morales MJ, Rasmusson RL, Strauss HC (2005) Time- and voltage-dependent components of Kv4.3 inactivation. Biophys J 89:3026–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Bondarenko VE, Qu Y, Morales MJ, Rasmusson RL, Strauss HC (2004) Activation properties of Kv4.3 channels: time, voltage and [K+]o dependence. J Physiol 557:705–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DW, Desai RR, Crotti L, Arnestad M, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Rognum T, Schwartz PJ, George AL Jr (2007) Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 115:368–376

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mi J, Lu K, Lu Y, Wang K (2015) Comparison of gating properties and use-dependent block of Nav1.5 and Nav1.7 channels by anti-arrhythmics mexiletine and lidocaine. PLoS ONE 10:e0128653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Kelvin Rozier for proofreading the manuscript and giving helpful comments and the University System of Georgia (USG) for supporting Tesfaye Asfaw through the Tuition Assistance Program (TAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir E. Bondarenko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Functions Used in all Models

$${f_1}\left( {\text{V}} \right)=\frac{1}{{1.0+\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)}}$$
(22)
$${f_2}\left( {\text{V}} \right)=\frac{1}{{1.0+\exp \left( {\frac{{V+90.0~}}{{5.0}}} \right)}}$$
(23)
$${\alpha _1}\left( {\text{V}} \right)=12.0 \cdot \exp \left( {\frac{V}{{50.0}}} \right)$$
(24)
$${\alpha _2}\left( {\text{V}} \right)=3.0 \cdot \exp \left( {\frac{V}{{30.0}}} \right)$$
(25)
$${\beta _1}\left( {\text{V}} \right)=0.2 \cdot \exp \left( { - \frac{V}{{20.0}}} \right)$$
(26)
$${\beta _2}\left( {\text{V}} \right)=0.025 \cdot \exp \left( { - \frac{V}{{20.0}}} \right)$$
(27)

Model 1

$$\frac{{{\text{d}}{{\text{C}}_2}}}{{{\text{d}}t}}=3\alpha {{\text{C}}_3} - \beta {{\text{C}}_2}+2\beta {{\text{C}}_1} - 2\alpha {{\text{C}}_2}$$
(28)
$$\frac{{{\text{d}}{{\text{C}}_1}}}{{{\text{d}}t}}=2\alpha {{\text{C}}_2} - 2\beta {{\text{C}}_1}+3\beta {\text{O}} - \alpha {{\text{C}}_1}$$
(29)
$$\frac{{{\text{dO}}}}{{{\text{d}}t}}=\alpha {{\text{C}}_1} - 3\beta {\text{O}}+{k_{{\text{ifo}}}}{\text{IF}} - {k_{{\text{oif}}}}{\text{O}}$$
(30)
$$\frac{{{\text{dIF}}}}{{{\text{d}}t}}={k_{{\text{oif}}}}{\text{O}} - {k_{{\text{ifo}}}}{\text{IF}}$$
(31)
$${{\text{C}}_3}=1 - \left( {{{\text{C}}_2}+{{\text{C}}_1}+{\text{O}}+{\text{IF}}} \right)$$
(32)
$$\alpha \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\alpha _2}\left( {\text{V}} \right)+{\alpha _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.3}}} \right)} \right]$$
(33)
$$\beta \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\beta _2}\left( {\text{V}} \right)+{\beta _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)} \right]~$$
(34)
$${k_{{\text{oif}}1}}\left( {\text{V}} \right)=0.432 \cdot \exp \left( {\frac{{V+50.0}}{{30.0}}} \right)~$$
(35)
$${k_{{\text{oif}}2}}\left( {\text{V}} \right)=0.0345 \cdot \exp \left( {\frac{{V+80.0}}{{14.8}}} \right)$$
(36)
$${k_{{\text{ifo}}1}}\left( {\text{V}} \right)=0.01 \cdot \exp \left( { - \frac{{V+50.0}}{{30}}} \right)$$
(37)
$${k_{{\text{ifo}}2}}\left( {\text{V}} \right)=0.018 \cdot \exp \left( { - \frac{{V+100.0}}{{13.6}}} \right)$$
(38)
$${k_{{\text{oif}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{oif}}2}}+{k_{{\text{oif}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(39)
$${k_{{\text{ifo}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{ifo}}2}}+{k_{{\text{ifo}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(40)

Model 2

$$\frac{{{\text{d}}{{\text{C}}_2}}}{{{\text{d}}t}}=3\alpha {{\text{C}}_3} - \beta {{\text{C}}_2}+2\beta {{\text{C}}_1} - 2\alpha {{\text{C}}_2}$$
(41)
$$\frac{{{\text{d}}{{\text{C}}_1}}}{{{\text{d}}t}}=2\alpha {{\text{C}}_2} - 2\beta {{\text{C}}_1}+3\beta {\text{O}} - \alpha {{\text{C}}_1}+{k_{{\text{ifc}}1}}{\text{IF}} - {k_{{\text{c1if}}}}{{\text{C}}_1}$$
(42)
$$\frac{{{\text{dO}}}}{{{\text{d}}t}}=\alpha {{\text{C}}_1} - 3\beta {\text{O}}+{k_{{\text{ifo}}}}{\text{IF}} - {k_{{\text{oif}}}}{\text{O}}$$
(43)
$$\frac{{{\text{dIF}}}}{{{\text{d}}t}}={k_{{\text{oif}}}}{\text{O}} - {k_{{\text{ifo}}}}{\text{IF}}+{k_{{\text{c1if}}}}{{\text{C}}_1} - {k_{{\text{ifc1}}}}{\text{IF}}$$
(44)
$${{\text{C}}_3}=1 - \left( {{{\text{C}}_2}+{{\text{C}}_1}+{\text{O}}+{\text{IF}}} \right)$$
(45)
$$\alpha \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\alpha _2}\left( {\text{V}} \right)+{\alpha _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.3}}} \right)} \right]$$
(46)
$$\beta \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\beta _2}\left( {\text{V}} \right)+{\beta _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)} \right]$$
(47)
$${k_{{\text{oif}}1}}\left( {\text{V}} \right)=0.432 \cdot \exp \left( {\frac{{V+50.0}}{{30.0}}} \right)~$$
(48)
$${k_{{\text{oif}}2}}\left( {\text{V}} \right)=0.00552 \cdot \exp \left( {\frac{{V+80.0}}{{30}}} \right)$$
(49)
$${k_{{\text{ifo}}1}}\left( {\text{V}} \right)=0.01 \cdot \mu \cdot \exp \left( { - \frac{{V+50.0}}{{30}}} \right)$$
(50)
$${k_{{\text{ifo}}2}}\left( {\text{V}} \right)=0.018 \cdot \rho \cdot \exp \left( { - \frac{{V+100.0}}{{13.6}}} \right)$$
(51)
$$\mu =0.000006,\,\rho =0.000006$$
(52)
$${k_{{\text{oif}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{oif}}2}}+{k_{{\text{oif1}}}}\exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)~$$
(53)
$${k_{{\text{ifo}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{ifo}}2}}+{k_{{\text{ifo}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(54)
$${k_{{\text{c1if}}}}=0.3$$
(55)
$${k_{{\text{ifc1}}}}=3.0 \cdot \beta \cdot {k_{{\text{ifo}}}} \cdot \frac{{{k_{{\text{c1if}}}}}}{{\alpha \cdot {k_{{\text{oif}}}}}}$$
(56)

Model 3

$$\frac{{{\text{d}}{{\text{C}}_2}}}{{{\text{d}}t}}=3\alpha {{\text{C}}_3} - \beta {{\text{C}}_2}+2\beta {{\text{C}}_1} - 2\alpha {{\text{C}}_2}+\frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2} - {k_{{\text{ci}}}}{f^2}{{\text{C}}_2}$$
(57)
$$\frac{{{\text{d}}{{\text{C}}_1}}}{{{\text{d}}t}}=2\alpha {{\text{C}}_2} - 2\beta {{\text{C}}_1}+3\beta {\text{O}} - \alpha {{\text{C}}_1}+\frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1} - {k_{{\text{ci}}}}f{{\text{C}}_1}$$
(58)
$$\frac{{{\text{dO}}}}{{{\text{d}}t}}=\alpha {{\text{C}}_1} - 3\beta {\text{O}}+{k_{{\text{ifo}}}}{\text{IF}} - {k_{{\text{oif}}}}{\text{O}}~~$$
(59)
$$\frac{{{\text{dIF}}}}{{{\text{d}}t}}={k_{{\text{oif}}}}{\text{O}} - {k_{{\text{ifo}}}}{\text{IF}}+\frac{\alpha }{f}{\text{I}}{{\text{C}}_1} - 3\beta f{\text{IF}}$$
(60)
$$\frac{{{\text{dI}}{{\text{C}}_1}}}{{{\text{d}}t}}=\frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2} - 2\beta f{\text{I}}{{\text{C}}_1}+3\beta f{\text{IF}} - \frac{\alpha }{f}{\text{I}}{{\text{C}}_1}+{k_{{\text{ci}}}}f{{\text{C}}_1} - \frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1}$$
(61)
$$\frac{{{\text{dI}}{{\text{C}}_2}}}{{{\text{d}}t}}=\frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3} - \beta f{\text{I}}{{\text{C}}_2}+{k_{{\text{ci}}}}{f^2}{{\text{C}}_2} - \frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2}+2\beta f{\text{I}}{{\text{C}}_1} - \frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_{2~}}$$
(62)
$$\frac{{{\text{dI}}{{\text{C}}_3}}}{{{\text{d}}t}}={k_{{\text{ci}}}}{f^3}{{\text{C}}_3} - \frac{{{k_{{\text{ic}}}}}}{{{f^3}}}{\text{I}}{{\text{C}}_3}+\beta f{\text{I}}{{\text{C}}_2} - \frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3}$$
(63)
$${{\text{C}}_3}=1 - \left( {{{\text{C}}_2}+{{\text{C}}_1}+{\text{O}}+{\text{IF}}+{\text{I}}{{\text{C}}_1}+{\text{I}}{{\text{C}}_2}+{\text{I}}{{\text{C}}_3}} \right)$$
(64)
$$\alpha \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\alpha _2}\left( {\text{V}} \right)+{\alpha _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.3}}} \right)} \right]$$
(65)
$$\beta \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\beta _2}\left( {\text{V}} \right)+{\beta _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)} \right]~$$
(66)
$${k_{{\text{oif}}1}}\left( {\text{V}} \right)=0.432 \cdot \exp \left( {\frac{{V+50.0}}{{30.0}}} \right)$$
(67)
$${k_{{\text{oif}}2}}\left( {\text{V}} \right)=0.0345 \cdot \exp \left( {\frac{{V+80.0}}{{14.8}}} \right)$$
(68)
$${k_{{\text{ifo}}1}}\left( {\text{V}} \right)=0.01 \cdot \mu \cdot \exp \left( { - \frac{{V+50.0}}{{30}}} \right)$$
(69)
$${k_{{\text{ifo}}2}}\left( {\text{V}} \right)=0.018 \cdot \rho \cdot \exp \left( { - \frac{{V+100.0}}{{13.6}}} \right)$$
(70)
$$\mu =0.00915\quad \rho =0.00915$$
(71)
$${k_{{\text{oif}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{oif}}2}}+{k_{{\text{oif}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(72)
$${k_{{\text{ifo}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{ifo}}2}}+{k_{{\text{ifo1}}}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(73)
$${f=0.3}$$
(74)
$${k_{{\text{ci}}}}~=~3.0 \cdot {k_{{\text{oif}}}}$$
(75)
$${k_{{\text{ic}}}}={k_{\text{ci}}} \cdot \frac{{{k_{{\text{ifo}}}}}}{{{k_{{\text{oif}}}}}}$$
(76)

Model 4

$$\frac{{{\text{d}}{{\text{C}}_2}}}{{{\text{d}}t}}=3\alpha {{\text{C}}_3} - \beta {{\text{C}}_2}+2\beta {{\text{C}}_1} - 2\alpha {{\text{C}}_2}+\frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2} - {k_{{\text{ci}}}}{f^2}{{\text{C}}_2}$$
(77)
$$\frac{{{\text{d}}{{\text{C}}_1}}}{{{\text{d}}t}}=2\alpha {{\text{C}}_2} - 2\beta {{\text{C}}_1}+3\beta {\text{O}} - \alpha {{\text{C}}_1}+\frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1} - {k_{{\text{ci}}}}f{{\text{C}}_1}$$
(78)
$$\frac{{{\text{dO}}}}{{{\text{d}}t}}=\alpha {{\text{C}}_1}~ - 3\beta {\text{O}}+{k_{{\text{ifo}}}}{\text{IF}} - {k_{{\text{oif}}}}{\text{O}}+{k_{{\text{iso}}}}{\text{IS}} - {k_{{\text{ois}}}}{\text{O}}$$
(79)
$$\frac{{{\text{dIF}}}}{{{\text{d}}t}}={k_{{\text{oif}}}}{\text{O}} - {k_{{\text{ifo}}}}{\text{IF}}+\frac{\alpha }{f}{\text{I}}{{\text{C}}_1} - 3\beta f{\text{IF}}$$
(80)
$$\frac{{{\text{dI}}{{\text{C}}_1}}}{{{\text{d}}t}}=\frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2} - 2\beta f{\text{I}}{{\text{C}}_1}+3\beta f{\text{IF}} - \frac{\alpha }{f}{\text{I}}{{\text{C}}_1}+{k_{{\text{ci}}}}f{{\text{C}}_1} - \frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1}$$
(81)
$$\frac{{{\text{dI}}{{\text{C}}_2}}}{{{\text{d}}t}}=\frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3} - \beta f{\text{I}}{{\text{C}}_2}+{k_{{\text{ci}}}}{f^2}{{\text{C}}_2} - \frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2}+2\beta f{\text{I}}{{\text{C}}_1} - \frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2}$$
(82)
$$\frac{{{\text{dI}}{{\text{C}}_3}}}{{{\text{d}}t}}={k_{{\text{ci}}}}{f^3}{{\text{C}}_3} - \frac{{{k_{{\text{ic}}}}}}{{{f^3}}}{\text{I}}{{\text{C}}_3}+\beta f{\text{I}}{{\text{C}}_2} - \frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3}$$
(83)
$$\frac{{{\text{dIS}}}}{{{\text{d}}t}}={k_{{\text{ois}}}}{\text{O}} - {k_{{\text{iso}}}}{\text{IS}}$$
(84)
$${{C}_3}=1 - \left( {{{C}_2}+{{C}_1}+{O}+{IF}+{{IC}_1}+{{IC}_2}+{{IC}_3}+{IS}} \right)$$
(85)
$${\alpha}\left( {V} \right)={{{f}}_1}\left( {V} \right)\left[ {{{\alpha}_2}\left( {V} \right)+{{\alpha}_1}\left( {V} \right)\exp \left( {\frac{{{{V}}+50.0}}{{5.3}}} \right)} \right]$$
(86)
$$\beta \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\beta _2}\left( {\text{V}} \right)+{\beta _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)} \right]$$
(87)
$${k_{{\text{oif}}1}}\left( {\text{V}} \right)=0.432 \cdot \exp \left( {\frac{{V+50.0}}{{30.0}}} \right)$$
(88)
$${k_{{\text{oif}}2}}\left( {\text{V}} \right)=0.0345 \cdot \exp \left( {\frac{{V+80.0}}{{14.8}}} \right)$$
(89)
$${k_{{\text{ifo}}1}}\left( {\text{V}} \right)=0.01 \cdot \mu \cdot \exp \left( { - \frac{{V+50.0}}{{30}}} \right)$$
(90)
$${k_{{\text{ifo}}2}}\left( {\text{V}} \right)=0.018 \cdot \rho \cdot \exp \left( { - \frac{{V+100.0}}{{13.6}}} \right)$$
(91)
$$\mu =0.00915,\quad \rho =0.00915$$
(92)
$${k_{{\text{oif}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{oif}}2}}+{k_{{\text{oif}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(93)
$${k_{{\text{ifo}}}}={f_2}\left( {\text{V}} \right)\left( {{k_{{\text{ifo}}2}}+{k_{{\text{ifo}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(94)
$$f=0.3$$
(95)
$${k_{{\text{ci}}}}=3.0 \cdot {k_{{\text{oif}}}}$$
(96)
$${k_{{\text{ic}}}}={k_{{\text{ci}}}} \cdot \frac{{{k_{{\text{ifo}}}}}}{{{k_{{\text{oif}}}}}}$$
(97)
$${k_{{\text{ois}}}}=1.0$$
(98)
$${k_{{\text{iso}}}}=0.05$$
(99)

Model 5


$$\frac{{{\text{d}}{{\text{C}}_2}}}{{{\text{d}}t}}=3\alpha {{\text{C}}_3} - \beta {{\text{C}}_2}+2\beta {{\text{C}}_1} - 2\alpha {{\text{C}}_2}+\frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2} - {k_{{\text{ci}}}}{f^2}{{\text{C}}_2}$$
(100)
$$\frac{{{\text{d}}{{\text{C}}_1}}}{{{\text{d}}t}}=2\alpha {{\text{C}}_2} - 2\beta {{\text{C}}_1}+3\beta {\text{O}} - \alpha {{\text{C}}_1}+\frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1} - {k_{{\text{ci}}}}f{{\text{C}}_1}$$
(101)
$$\frac{{{\text{dO}}}}{{{\text{d}}t}}=\alpha {{\text{C}}_1} - 3\beta {\text{O}}+{k_{{\text{ifo}}}}{\text{IF}} - {k_{{\text{oif}}}}{\text{O}}$$
(102)
$$\frac{{{\text{dIF}}}}{{{\text{d}}t}}={k_{{\text{oif}}}}{\text{O}} - {k_{{\text{ifo}}}}{\text{IF}}+{k_{{\text{isif}}}}{\text{IS}} - {k_{{\text{ifis}}}}{\text{IF}}$$
(103)
$$\frac{{{\text{dIS}}}}{{{\text{d}}t}}={k_{{\text{ifis}}}}{\text{IF}} - {k_{{\text{isif}}}}{\text{IS}}+\frac{\alpha }{f}{\text{I}}{{\text{C}}_1} - 3\beta f{\text{IS}}$$
(104)
$$\frac{{{\text{dI}}{{\text{C}}_1}}}{{{\text{d}}t}}=\frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2} - 2\beta f{\text{I}}{{\text{C}}_1}+3\beta f{\text{IS}} - \frac{\alpha }{f}{\text{I}}{{\text{C}}_1}+{k_{{\text{ci}}}}f{{\text{C}}_1} - \frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1}$$
(105)
$$\frac{{{\text{dI}}{{\text{C}}_2}}}{{{\text{d}}t}}=\frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3} - \beta f{\text{I}}{{\text{C}}_2}+{k_{{\text{ci}}}}{f^2}{{\text{C}}_2} - \frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2}+2\beta f{\text{I}}{{\text{C}}_1} - \frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2}$$
(106)
$$\frac{{{\text{dI}}{{\text{C}}_3}}}{{{\text{d}}t}}={k_{{\text{ci}}}}{f^3}{{\text{C}}_3} - \frac{{{k_{{\text{ic}}}}}}{{{f^3}}}{\text{I}}{{\text{C}}_3}+\beta f{\text{I}}{{\text{C}}_2} - \frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3}$$
(107)
$${{\text{C}}_3}=1 - ({{\text{C}}_2}+{{\text{C}}_1}+{\text{O}}+{\text{IF}}+{\text{IS}}+{\text{I}}{{\text{C}}_1}+{\text{I}}{{\text{C}}_2}+{\text{I}}{{\text{C}}_3})$$
(108)
$$\alpha \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\alpha _2}\left( {\text{V}} \right)+{\alpha _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.3}}} \right)} \right]$$
(109)
$$\beta \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\beta _2}\left( {\text{V}} \right)+{\beta _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)} \right]$$
(110)
$${k_{{\text{oif}}1}}\left( {\text{V}} \right)=0.432 \cdot \exp \left( {\frac{{V+50.0}}{{30.0}}} \right)$$
(111)
$${k_{{\text{oif}}2}}\left( {\text{V}} \right)=0.0345 \cdot \exp \left( {\frac{{V+80.0}}{{14.8}}} \right)$$
(112)
$${k_{{\text{ifo}}1}}\left( {\text{V}} \right)=0.01 \cdot \mu \cdot \exp \left( { - \frac{{V+50.0}}{{30}}} \right)$$
(113)
$${k_{{\text{ifo}}2}}\left( {\text{V}} \right)=0.018 \cdot \rho \cdot \exp \left( { - \frac{{V+100.0}}{{13.6}}} \right)$$
(114)
$$\mu =0.288\,\rho =0.288$$
(115)
$${k_{{\text{oif}}}}\,=\,{f_2}\left( {\text{V}} \right)\left( {{k_{{\text{oif}}2}}+{k_{{\text{oif}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(116)
$${k_{{\text{ifo}}}}\,=\,{f_2}\left( {\text{V}} \right)\left( {{k_{{\text{ifo2}}}}+{k_{{\text{ifo}}1}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(117)
$$f\,=\,0.3$$
(118)
$${k_{{\text{ci}}}}\,=\,3.0 \cdot {k_{{\text{oif}}}}$$
(119)
$${k_{{\text{ic}}}}\,=\,{k_{{\text{ci}}}} \cdot \frac{{{k_{{\text{ifo}}}} \cdot {k_{{\text{ifoi}}}}}}{{{k_{{\text{oif}}}} \cdot {k_{{\text{oiif}}}}}}~$$
(120)
$${k_{{\text{ifoi}}}}\,=\,0.0035$$
(121)
$$~{k_{{\text{oiif}}}}\,=\,0.1015$$
(122)

Model 6


$$\frac{{{\text{d}}{{\text{C}}_2}}}{{{\text{d}}t}}=3\alpha {{\text{C}}_3} - \beta {{\text{C}}_2}+2\beta {{\text{C}}_1} - 2\alpha {{\text{C}}_2}+\frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2} - {k_{{\text{ci}}}}{f^2}{{\text{C}}_2}$$
(123)
$$\frac{{{\text{d}}{{\text{C}}_1}}}{{{\text{d}}t}}=2\alpha {{\text{C}}_2}~ - 2\beta {{\text{C}}_1}+3\beta {\text{O}} - \alpha {{\text{C}}_1}+\frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1} - {k_{{\text{ci}}}}f{C_1}$$
(124)
$$\frac{{{\text{dO}}}}{{{\text{d}}t}}=\alpha {{\text{C}}_1} - 3\beta {{\text{O}}}+ {{{k}_{\text{ifo}}}}{\text{IF}}- {{{{k}}_{\text{oif}}}}{\text{O}}$$
(125)
$$\frac{{{\text{dIF}}}}{{{\text{d}}t}}={k_{{\text{oif}}}}{\text{O}}~ - {k_{{\text{ifo}}}}{\text{IF}}+{k_{{\text{isif}}}}{\text{IS}} - {k_{{\text{ifis}}}}{\text{IF}}$$
(126)
$$\frac{{{\text{dIS}}}}{{{\text{d}}t}}={k_{{\text{ifis}}}}{\text{IF}} - {k_{{\text{isif}}}}{\text{IS}}+{k_{{\text{imis}}}}{\text{IM}} - {k_{{\text{isim}}}}{\text{IS}}$$
(127)
$$\frac{{{\text{dIM}}}}{{{\text{d}}t}}={k_{{\text{isim}}}}{\text{IS}} - {k_{{\text{imis}}}}{\text{IM}}+\frac{\alpha }{f}{\text{I}}{{\text{C}}_1} - 3\beta f{\text{IM}}$$
(128)
$$\frac{{{\text{dI}}{{\text{C}}_1}}}{{{\text{d}}t}}=\frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2} - 2\beta f{\text{I}}{{\text{C}}_1}+3\beta f{\text{IM}} - \frac{\alpha }{f}{\text{I}}{{\text{C}}_1}+{k_{{\text{ci}}}}f{{\text{C}}_1} - \frac{{{k_{{\text{ic}}}}}}{f}{\text{I}}{{\text{C}}_1}$$
(129)
$$\frac{{{\text{dI}}{{\text{C}}_2}}}{{{\text{d}}t}}=\frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3} - \beta f{\text{I}}{{\text{C}}_2}+{k_{{\text{ci}}}}{f^2}{{\text{C}}_2} - \frac{{{k_{{\text{ic}}}}}}{{{f^2}}}{\text{I}}{{\text{C}}_2}+2\beta f{\text{I}}{{\text{C}}_1} - \frac{{2\alpha }}{f}{\text{I}}{{\text{C}}_2}$$
(130)
$$\frac{{{\text{dI}}{{\text{C}}_3}}}{{{\text{d}}t}}={k_{{\text{ci}}}}{f^3}{{\text{C}}_3} - \frac{{{k_{{\text{ic}}}}}}{{{f^3}}}{\text{I}}{{\text{C}}_3}+\beta f{\text{I}}{{\text{C}}_2} - \frac{{3\alpha }}{f}{\text{I}}{{\text{C}}_3}$$
(131)
$${C_3}=1 - \left( {{{\text{C}}_2}+{{\text{C}}_1}+{\text{O}}+{\text{IF}}+{\text{IS}}+{\text{IM}}+{\text{I}}{{\text{C}}_1}+{\text{I}}{{\text{C}}_2}+{\text{I}}{{\text{C}}_3}} \right)$$
(132)
$$\alpha \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\alpha _2}\left( {\text{V}} \right)+{\alpha _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.3}}} \right)} \right]$$
(133)
$$\beta \left( {\text{V}} \right)={f_1}\left( {\text{V}} \right)\left[ {{\beta _2}\left( {\text{V}} \right)+{\beta _1}\left( {\text{V}} \right)\exp \left( {\frac{{V+50.0}}{{5.0}}} \right)} \right]$$
(134)
$${k_{{\text{oif}}1}}\left( {\text{V}} \right)=0.432 \cdot \exp \left( {\frac{{V+50.0}}{{30.0}}} \right)$$
(135)
$${k_{{\text{oif}}2}}\left( {\text{V}} \right)=0.0345 \cdot \exp \left( {\frac{{V+80.0}}{{14.8}}} \right)$$
(136)
$${k_{{\text{ifo1}}}}\left( {\text{V}} \right)\,=\,0.01 \cdot \mu \cdot {\text{exp}}\left( { - \frac{{V+50.0}}{{30}}} \right)$$
(137)
$${k_{{\text{ifo2}}}}\left( {\text{V}} \right)\,=\,0.018 \cdot \rho \cdot \exp \left( { - \frac{{V+100.0}}{{13.6}}} \right)$$
(138)
$$\mu \,=\,0.288\,\rho \,=\,0.288$$
(139)
$${k_{{\text{oif}}}}\,=\,{f_2}\left( {\text{V}} \right)\left( {{k_{{\text{oif2}}}}+{k_{{\text{oif1}}}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(140)
$${k_{{\text{ifo}}}}\,=\,{f_2}\left( {\text{V}} \right)\left( {{k_{{\text{ifo2}}}}+{k_{{\text{ifo1}}}} \cdot \exp \left( {\frac{{V+90.0}}{{5.0}}} \right)} \right)$$
(141)
$$f\,=\,0.3$$
(142)
$${k_{{\text{ci}}}}\,=\,3.0 \cdot {k_{{\text{oif}}}}$$
(143)
$${k_{{\text{ic}}}}\,=\,{k_{{\text{ci}}}} \cdot \frac{{{k_{{\text{ifo}}}} \cdot {k_{{\text{imis}}}} \cdot {k_{{\text{isif}}}}}}{{{k_{{\text{oif}}}} \cdot {k_{{\text{isim}}}} \cdot {k_{{\text{ifis}}}}}}$$
(144)
$${k_{{\text{isif}}}}\,=\,0.0035$$
(145)
$$~{k_{{\text{ifis}}}}\,=\,0.1015$$
(146)
$${k_{{\text{isim}}}}\,=\,0.0125~$$
(147)
$$~{k_{{\text{imis}}}}\,=\,0.0125$$
(148)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfaw, T.N., Bondarenko, V.E. A Mathematical Model of the Human Cardiac Na+ Channel. J Membrane Biol 252, 77–103 (2019). https://doi.org/10.1007/s00232-018-00058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-018-00058-x

Keywords

Navigation