Skip to main content
Log in

Spatio-temporal correlations between catastrophe events in a microtubule bundle: a computational study

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We explore correlations between dynamics of different microtubules in a bundle, via numerical simulations, using a one-dimensional stochastic model of a microtubule. The guanosine triphosphate (GTP)-bound tubulins undergo diffusion-limited binding to the tip. Random hydrolysis events take place along the microtubule and converts the bound GTP in tubulin to guanosine diphosphate (GDP). The microtubule starts depolymerising when the monomer at the tip becomes GDP-bound; in this case, detachment of GDP-tubulin ensues and continues until either GTP-bound tubulin is exposed or complete depolymerisation is achieved. In the latter case, the microtubule is defined to have undergone a “catastrophe”. Our results show that, in general, the dynamics of growth and catastrophe in different microtubules are coupled to each other; the closer the microtubules are, the stronger the coupling. In particular, all microtubules grow slower, on average, when brought closer together. The reduction in growth velocity also leads to more frequent catastrophes. More dramatically, catastrophe events in the different microtubules forming a bundle are found to be correlated; a catastrophe event in one microtubule is more likely to be followed by a similar event in the same microtubule. This propensity of bunching disappears when the microtubules move farther apart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:232

    Article  CAS  Google Scholar 

  • Desai A, Mitchison T (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83

    Article  CAS  Google Scholar 

  • Howard J (2001) Mechanics of the Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland

    Google Scholar 

  • Verde F, Dogterom M, Stelzer E, Karsenti E, Leibler S (1992) Control of microtubule dynamics and length by cyclin A and cyclin B dependent kinases in Xenopus egg extracts. J Cell Biol 118:1097

    Article  CAS  Google Scholar 

  • Dogterom M, Leibler S (1993) Physical aspects of the growth and regulation of microtubule structures. Phys Rev Lett 70:1347

    Article  CAS  Google Scholar 

  • Margolin G, Gregoretti IV, Goodson HV, Alber MS (2006) Analysis of a mesoscopic stochastic model of microtubule dynamic instability. Phys Rev E 74:041920

    Article  Google Scholar 

  • Li X, Kolomeisky AB (2013) Theoretical analysis of microtubule dynamics using a physical–chemical description of hydrolysis. J Phys Chem B 118:13777

    Article  Google Scholar 

  • Bowne-Anderson H, Hibbel A, Howard J (2015) Regulation of microtubule growth and catastrophe: Unifying theory and experiment. Trends Cell Biol 25:769

    Article  CAS  Google Scholar 

  • Laan L et al (2008) Force-generation and dynamic instability of microtubule bundles. Proc Natl Acad Sci USA 105:8920

    Article  CAS  Google Scholar 

  • Zelinski B, Kierfeld J (2013) Cooperative dynamics of microtubule ensembles: polymerization forces and rescue-induced oscillations. Phys Rev E 87:012703

    Article  Google Scholar 

  • Kozlowski C, Srayko M, Nédélec F (2007) Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129:499

    Article  CAS  Google Scholar 

  • Valiyakath J, Gopalakrishnan M (2018) Polymerisation force of a rigid filament bundle: diffusive interaction leads to sub-linear force-number scaling. Sci Rep 8:2526

    Article  Google Scholar 

  • Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141

    Article  CAS  Google Scholar 

  • Janson ME, de Dood ME, Dogterom M (2003) Dynamic instability of microtubules is regulated by force. J Cell Biol 161:1029

    Article  CAS  Google Scholar 

  • Brun L, Rupp B, Ward JJ, Nédélec F (2009) A theory of microtubule catastrophes and their regulation. Proc Natl Acad Sci USA 106(50):21173

    Article  CAS  Google Scholar 

  • Martin S, Schilstra M, Bayley P (1993) Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Biophys J 65:578

    Article  CAS  Google Scholar 

  • Molodstov MI et al (2005) A molecular-mechanical model of the microtubule. Biophys J 88:3167

    Article  Google Scholar 

  • VanBuren V, Cassimeris L, Odde DJ (2005) Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys J 89:2911

    Article  CAS  Google Scholar 

  • Margolin G et al (2012) The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model. Mol Biol Cell 23(4):642

    Article  CAS  Google Scholar 

  • Jemseena V, Gopalakrishnan M (2013) Microtubule catastrophe from protofilament dynamics. Phys Rev E 88:032717

    Article  CAS  Google Scholar 

  • Zakharov P et al (2015) Molecular and mechanical causes of microtubule catastrophe and aging. Biophys J 109(12):2574

    Article  CAS  Google Scholar 

  • Jain I, Inamdar MM, Padinhateeri R (2015) Statistical mechanics provides novel insights into microtubule stability and mechanism of shrinkage. PLoS Comp Biol 11:1

    Article  Google Scholar 

  • Flyvbjerg H, Holy TE, Leibler S (1994) Stochastic dynamics of microtubules: a model for caps and catastrophes. Phys Rev Lett 73:2372

    Article  CAS  Google Scholar 

  • Antal T, Krapivsky PL, Redner S, Mailman M, Chakraborty B (2007) Dynamics of an idealized model of microtubule growth and catastrophe. Phys Rev E 76:041907

    Article  CAS  Google Scholar 

  • Padinhateeri R, Kolomeisky AB, Lacoste D (2012) Random hydrolysis controls the dynamic instability of microtubules. Biophys J 102:1274

    Article  CAS  Google Scholar 

  • Aparna JS, Padinhateeri R, Das D (2017) Signatures of a macroscopic switching transition for a dynamic microtubule. Sci Rep 7:45747

    Article  CAS  Google Scholar 

  • Traytak SD (1994) The role of the diffusive interaction in time-dependent diffusion-limited reactions. Chem Phys Lett 227:180

    Article  CAS  Google Scholar 

  • Holy TE, Leibler S (1984) Dynamic instability of microtubules as an efficient way to search in space. Proc Natl Acad Sci USA 91:5682

    Article  Google Scholar 

  • Gopalakrishnan M, Govindan BS (2011) A first-passage-time theory for search and capture by microtubules in mitosis. Bull Math Biol 73:2483

    Article  Google Scholar 

  • Blackwell R et al (2017) Contributions of microtubule dynamic instability and rotational diffusion to kinetochore capture. Biophys J 112(3):552

    Article  CAS  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.D acknowledges the P.G. Senapathy Centre for Computing Resources, IIT Madras for time in their Virgo cluster. M.G would like to thank Chaitanya Athale for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Gopalakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwe, M., Gopalakrishnan, M. Spatio-temporal correlations between catastrophe events in a microtubule bundle: a computational study. Eur Biophys J 49, 215–222 (2020). https://doi.org/10.1007/s00249-020-01427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01427-y

Keywords

Navigation