Skip to main content
Log in

Distance measurements in the F0F1-ATP synthase from E. coli using smFRET and PELDOR spectroscopy

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer in single enzyme molecules (smFRET, single-molecule measurement) allows the measurement of multicomponent distance distributions in complex biomolecules similar to pulsed electron–electron double resonance (PELDOR, ensemble measurement). Both methods use reporter groups: FRET exploits the distance dependence of the electric interaction between electronic transition dipole moments of the attached fluorophores, whereas PELDOR spectroscopy uses the distance dependence of the interaction between the magnetic dipole moments of attached spin labels. Such labels can be incorporated easily to cysteine residues in the protein. Comparison of distance distributions obtained with both methods was carried out with the H+-ATPase from Escherichia coli (EF0F1). The crystal structure of this enzyme is known. It contains endogenous cysteines, and as an internal reference two additional cysteines were introduced (EF0F1–γT106C–εH56C). These positions were chosen to allow application of both methods under optimal conditions. Both methods yield very similar multicomponent distance distributions. The dominating distance distribution (> 50%) is due to the two cysteines introduced by site-directed mutagenesis and the distance is in agreement with the crystal structure. Two additional distance distributions are detected with smFRET and with PELDOR. These can be assigned by comparison with the structure to labels at endogenous cysteines. One additional distribution is detected only with PELDOR. The comparison indicates that under optimal conditions smFRET and PELDOR result in the same distance distributions. PELDOR has the advantage that different distributions can be obtained with ensemble measurements, whereas FRET requires single-molecule techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    CAS  PubMed  Google Scholar 

  • Aggeler R, Capaldi RA (1992) Cross-linking of the gamma subunit of the Escherichia coli ATPase (ECF1) via cysteines introduced by site-directed mutagenesis. J Biol Chem 267:21355–21359

    CAS  PubMed  Google Scholar 

  • Bienert R, Zimmermann B, Rombach-Riegraf V, Gräber P (2011) Time-dependent FRET with single enzymes: domain motions and catalysis in H+-ATP synthases. ChemPhysChem 12:510–517

    CAS  PubMed  Google Scholar 

  • Bordignon E, Steinhoff HJ (2007) Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESR. In: Hemminga MA, Berliner LJ (eds) ESR spectroscopy in membrane biophysics, vol 217. Kluwer Academic/Plenum Publ, New York, pp 129–164

    Google Scholar 

  • Börsch M, Diez M, Zimmermann B, Reuter R, Gräber P (2002) Stepwise rotation of the γ-subunit of EF0F1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett 527:147–152

    PubMed  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase—some probabilities and possibilities. Biochim Biophys Acta 1140:215–250

    CAS  PubMed  Google Scholar 

  • Chiang Y-W, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172:279–295

    CAS  PubMed  Google Scholar 

  • Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CAM, Gräber P (2004) Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11:135–141

    CAS  PubMed  Google Scholar 

  • Feniouk BA, Suzuki T, Yoshida M (2006) The role of subunit epsilon in the catalysis and regulation of FOF1-ATP synthase. Biochim Biophys Acta 1757:326–338

    CAS  PubMed  Google Scholar 

  • Fischer S, Gräber P (1999) Comparison of ΔpH- and Δφ-Driven ATP Synthesis Catalyzed by the H+-ATPases from Escherichia coli or chloroplasts reconstituted into Liposomes. FEBS Lett 457:327–332

    CAS  PubMed  Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys Berl 437:55–75

    Google Scholar 

  • Grohmann D, Klose D, Klare JP, Kay CWM, Steinhoff H-J, Werner F (2010) RNA-binding to archaeal RNA polymerase subunits F/E: a DEER and FRET study. J Am Chem Soc 132:5954–5955

    CAS  PubMed  Google Scholar 

  • Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268

    CAS  PubMed  Google Scholar 

  • Hellenkamp B et al (2017) Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat Methods 14:3597–3619

    Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    CAS  PubMed  Google Scholar 

  • Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    CAS  PubMed  Google Scholar 

  • Jeschke G (2016) Dipolar spectroscopy1double-resonance methods. eMagRes 5:1459–1475

    CAS  Google Scholar 

  • Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006—a comprehensive software package for analyzing PELDOR data. Appl Magn Reson 30:473–498

    CAS  Google Scholar 

  • Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102:377–390

    CAS  PubMed  Google Scholar 

  • Klose D, Klare JP, Grohmann D, Kay CWM, Werner F, Steinhoff H-J (2012) Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements. PLoS One 7:e39492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landi G, Zama F (2006) The active-set method for nonnegative regularization of linear ill-posed problems. Appl Math Comput 175:715–729

    Google Scholar 

  • McInnes EJL, Collison D (2016) EPR interactions1coupled spins. eMagRes 5:1445–1458

    CAS  Google Scholar 

  • Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    CAS  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    CAS  PubMed  Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340

    CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera-A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  Google Scholar 

  • Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–96

    Google Scholar 

  • Rein S, Lewe P, Andrade SL, Kacprzak S, Weber S (2018) Global analysis of complex PELDOR time traces. J Magn Reson 295:17–26

    CAS  PubMed  Google Scholar 

  • Rodgers AJW, Wilce MCJ (2000) Structure of the γ–ε complex of ATP synthase. Nat Struct Mol Biol 7:1051–1054

    CAS  Google Scholar 

  • Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by epr spectroscopy. Q Rev Biophys 40:1–53

    CAS  PubMed  Google Scholar 

  • Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM (2016) Long distance measurements up to 160 Å in the GroEL tetradecamer using Q-band DEER EPR spectroscopy. Angew Chem Ind Ed 55:15905–15909

    CAS  Google Scholar 

  • Sielaff H, Duncan TM, Börsch M (2018) The regulatory subunit ε in Escherichia coli FOF1-ATP synthase. Biochim Biophys Acta 1859:775–788

    CAS  Google Scholar 

  • Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG (2016) Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 5:e21598

    PubMed  PubMed Central  Google Scholar 

  • Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Stocker R, Duncan TM, Stewart AG (2019) Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 8:e43864

    PubMed  PubMed Central  Google Scholar 

  • Steigmiller S, Börsch M, Gräber P, Huber M (2005) Distances between the b-subunits in the tether domain of F0F1-ATP synthase from E. coli. Biochim Biophys Acta 1708:143–153

    CAS  PubMed  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    CAS  PubMed  Google Scholar 

  • Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Transl Sov Math 4:1035–1038 (151, 501-504)

    Google Scholar 

  • Uhlin U, Cox GB, Guss JM (1997) Crystal structure of the ε subunit of the proton-translocating ATP synthase from Escherichia coli. Structure 5:1219–1230

    CAS  PubMed  Google Scholar 

  • Vámosi G, Gohlke C, Clegg RM (1996) Fluorescence characteristics of 5-Carboxytetramethylrhodamine linked covalently to the 5′ end of oligonucleotides: multiple conformers of single-stranded and double-stranded Dye-DNA complexes. Biophys J 71:972–994

    PubMed  PubMed Central  Google Scholar 

  • van der Meer BW, Coker GI, Chen S (1994) S-Y, resonance energy transfer: theory and data. VCH, New York

    Google Scholar 

  • Zarrabi N, Zimmermann B, Diez M, Gräber P, Wrachtrup J, Börsch M (2005) Asymmetry of rotational catalysis of single membrane-bound F0F1-ATP synthase. Proc SPIE 5699:175–188

    CAS  Google Scholar 

  • Zimmermann B, Diez M, Zarrabi N, Gräber P, Börsch M (2005) Movements of the ɛ-subunit during catalysis and activation in single membrane-bound H+-ATP synthase. EMBO J 24:2053–2063

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for general support and SW thanks especially for the (Grant INST 39/928-1 FUGG) for financing, together with the “Struktur- und Innovationsfonds für die Forschung Baden-Württemberg” (SIBW), pulsed EPR instrumentation that is operated within the MagRes Center of the Albert-Ludwigs-Universität Freiburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gräber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burger, M., Rein, S., Weber, S. et al. Distance measurements in the F0F1-ATP synthase from E. coli using smFRET and PELDOR spectroscopy. Eur Biophys J 49, 1–10 (2020). https://doi.org/10.1007/s00249-019-01408-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01408-w

Keywords

Navigation