Skip to main content
Log in

Polymer translocation through a hairy channel mimicking the inner plug of a nuclear pore complex

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A microscopic transport model of a polymer translocating through a nuclear pore complex (NPC) is presented based on self-consistent field theory (SCFT), with the NPC and its nucleoporins mimicked by a hairy channel. Multiple cell environment effects (electrolyte effect, excluded volume effect, NPC drag effect, and hydrophobic effect) are all considered in this hairy channel model. The influence of various parameters (polymer chain length, length of NPC, strength of hydrophobic effect, and excluded volume effect) on translocation time is studied through theoretical analysis and numerical calculation. Numerical simulation results show that an area of low nucleoporin number density exists in the NPC, which facilitates the translocation of the polymer. The results also show that the translocation time curves with increasing NPC length and polymer charge number are concave. In addition, there are critical values for NPC length and polymer charge number for which the translocation time has a minimal value. The translocation time decreases with the increasing strength of the hydrophobic effect and excluded volume effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

R 1 :

Radius of cell (m)

R 2 :

Radius of nucleus (m)

l 0 :

Length of NPC (m)

M :

Dimensionless length of NPC (dimensionless)

N d :

The total number of Kuhn segments of polymer (dimensionless)

b :

Length of Kuhn segment (m)

L :

Length of polymer (m)

f(r, r 1, s):

The conformational probability function of polymer in cytoplasm and nucleus (dimensionless)

F(r, s):

The probability distribution of polymer (dimensionless)

F T(r, s):

The probability distribution of tethered polymer (dimensionless)

φ s(r):

The external potential in cytoplasm (N m)

w d :

The excluded volume parameter between chain segments (m3)

U(r):

Electrostatic potential between ions and polymer (N m)

m d :

The number of polymer groups per segments of polymer (dimensionless)

z d :

The charge number of polymer groups of polymer (dimensionless)

ɛ 0 :

Dielectric constant (C2/m2 N)

z i :

The charge number of ith kind of ions in cytoplasm (dimensionless)

ρ s(r):

Number density of segments at location r in cytoplasm and nucleus (1/m3)

n i :

The number density of ith kind of ions in cytoplasm (1/m3)

n p :

Number of nucleoporin (dimensionless)

L p :

Length of nucleoporin (m)

N p :

Number of segments of nucleoporin (dimensionless)

κ(x):

Number of protein chains per unit area at location x (1/m2)

q(r, x, s):

Distribution function of nucleoporin (dimensionless)

q +(r, x, s):

Distribution function of nucleoporin (dimensionless)

R :

Radius of NPC (m)

ω p :

Self-consistent potential field of nucleoporin chain at location (r, x) (dimensionless)

w p :

Strength of excluded volume effect of nucleoporin chain (m3)

ρ p(r, x):

Number density of segments of nucleoporin chain at location (r, x) (1/m3)

χ :

Parameters of Flory–Huggins interactions between segments (dimensionless)

βH int :

Interaction energy between nucleoporin chains (dimensionless)

ξ 0 :

Constant which is used to ensure the incompressibility (N m)

ξ(r, x):

Mean field which is used to ensure the incompressibility of nucleoporin chains (N m)

F c(x, s):

The probability distribution of polymer in NPC (dimensionless)

φ c(s):

The external potential field (N m)

φ 1(s):

The electrostatic potential of nucleoporin chain (N m)

φ 2(s):

The hydrophobic potential of nucleoporin chain (N m)

φ 3(s):

The repulsion potential of nucleoporin chain (N m)

m p :

The number of polymer groups per segments of polymer (dimensionless)

z p :

The charge number of polymer groups of nucleoporin chain (dimensionless)

ρ c(x):

Number density of segments of polymer at location x (1/m3)

λ :

The length of hydrophobic effect (m)

ɛ h :

The strength of hydrophobic effect (N m)

ɛ c :

The strength of repulsion effect (N m)

k B :

Boltzmann constant (N m/K)

T :

Absolute temperature (K)

S 1 :

The conformational entropy of polymer at first stage (dimensionless)

S 2 :

The conformational entropy of polymer at second stage (dimensionless)

S 3 :

The conformational entropy of polymer at third stage (dimensionless)

F 1 :

The free energy of polymer at first stage (dimensionless)

F 2 :

The free energy of polymer at second stage (dimensionless)

F 3 :

The free energy of polymer at third stage (dimensionless)

k 0 :

Diffusion coefficient of polymer (m2/s)

τ〉:

Mean translocation time (s)

τ 1〉:

Translocation time of first stage (s)

τ 2〉:

Translocation time of second stage (s)

τ 3〉:

Translocation time of third stage (s)

References

  • Ando D, Zandi R, Kim YW, Colvin M, Rexach M, Gopinathan A (2014) Nuclear pore complex protein sequences determine overall copolymer brush structure and function. Biophys J 106(9):1997–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Efraim I, Gerace L (2001) Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J Cell Biol 152(2):411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti R, Kesselheim S, Košovan P, Holm C (2013) Tracer diffusion in a crowded cylindrical channel. Phys Rev E 87(6):062709

    Article  CAS  Google Scholar 

  • Chakrabarti R, Debnath A, Sebastian KL (2014) Diffusion in an elastic medium: A model for macromolecule transport across the nuclear pore complex. Phys A Stat Mech Appl 404:65–78

    Article  Google Scholar 

  • Corté L, Yamauchi K, Court F, Cloître M, Hashimoto T, Leibler L (2003) Annealing and defect trapping in lamellar phases of triblock terpolymers. Macromolecules 36(20):7695–7706

    Article  CAS  Google Scholar 

  • D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18(10):456–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drolet F, Fredrickson GH (1999) Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys Rev Lett 83(21):4317

    Article  CAS  Google Scholar 

  • Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757

    Article  CAS  PubMed  Google Scholar 

  • Freed KF, Dudowicz J, Stukalin EB, Douglas JF (2010) General approach to polymer chains confined by interacting boundaries. J Chem Phys 133(9):094901

    Article  CAS  PubMed  Google Scholar 

  • Gasiorowski JZ, Dean DA (2003) Mechanisms of nuclear transport and interventions. Adv Drug Deliv Rev 55(6):703–716

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Isgro TA, Schulten K (2007) Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Structure 15(8):977–991

    Article  CAS  PubMed  Google Scholar 

  • Kasianowicz JJ (2002) Nanometer-scale pores: potential applications for analyte detection and DNA characterization. Dis Markers 18(4):185–191

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Izadyar A, Nioradze N, Amemiya S (2013) Nanoscale mechanism of molecular transport through the nuclear pore complex as studied by scanning electrochemical microscopy. J Am Chem Soc 135(6):2321–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh J, Blobel G (2015) Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161(6):1361–1373

    Article  CAS  PubMed  Google Scholar 

  • Kong CY, Muthukumar M (2004) Polymer translocation through a nanopore. II. Excluded volume effect. J Chem Phys 120(7):3460–3466

    Article  CAS  PubMed  Google Scholar 

  • Kustanovich T, Rabin Y (2004) Metastable network model of protein transport through nuclear pores. Biophys J 86(4):2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim RY (2007) Gate-crashing the nuclear pore complex. Structure 15(8):889–891

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Darnell JE, Kaiser CA, Krieger M, Scott MP, Matsudaira P (2008) Molecular cell biology. Macmillan, New York

    Google Scholar 

  • Mair A, Tung C, Cacciuto A, Coluzza I (2018) Translocation of a globular polymer through a hairy pore. J Mol Liq 265:603–610

    Article  CAS  Google Scholar 

  • Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad MR (2011) Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. PLoS Comput Biol 7(6):e1002049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar M (1999) Polymer translocation through a hole. J Chem Phys 111(22):10371–10374

    Article  CAS  Google Scholar 

  • Peters R (2005) Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6(5):421–427

    Article  CAS  PubMed  Google Scholar 

  • Roan JR, Kawakatsu T (2002) Self-consistent-field theory for interacting polymeric assemblies. II. Steric stabilization of colloidal particles. J Chem Phys 116(16):7295–7310

    Article  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebrasse JP, Peters R (2002) Rapid translocation of NTF2 through the nuclear pore of isolated nuclei and nuclear envelopes. EMBO Rep 3(9):887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sischka A, Galla L, Meyer AJ, Spiering A, Knust S, Mayer M, Anselmetti D (2015) Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride-and lipid-coated membranes. Analyst 140(14):4843–4847

    Article  CAS  PubMed  Google Scholar 

  • Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci 106(19):7702–7707

    Article  PubMed  Google Scholar 

  • Sui M, Liu W, Shen Y (2011) Nuclear drug delivery for cancer chemotherapy. J Control Release 155(2):227–236

    Article  CAS  PubMed  Google Scholar 

  • Sun M (2006) Phase separation of multi-block copolymers and shape transformation of vesicles simulated by self-consistent field theory. Doctoral dissertation, Fudan University

  • Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789

    Article  CAS  PubMed  Google Scholar 

  • Tagliazucchi M, Peleg O, Kröger M, Rabin Y, Szleifer I (2013) Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc Natl Acad Sci 110(9):3363–3368

    Article  PubMed  Google Scholar 

  • Wagstaff KM, Jans DA (2009) Nuclear drug delivery to target tumour cells. Eur J Pharmacol 625(1–3):174–180

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Qiu F, Zhang H, Yang Y (2003) Interactions between brush-coated clay sheets in a polymer matrix. J Chem Phys 118(20):9447–9456

    Article  CAS  Google Scholar 

  • Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harbor Perspect Biol 2(10):a000562

    Article  CAS  Google Scholar 

  • Xu J (2005) Studies on the interactions in the systems of polymer brushes by self-consistent-field theory. Doctoral dissertation, Fudan University

  • Zilman A, Di Talia S, Chait BT, Rout MP, Magnasco MO (2007) Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol 3(7):e125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant no. 51375090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chibin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Cheng, Z., Lin, X. et al. Polymer translocation through a hairy channel mimicking the inner plug of a nuclear pore complex. Eur Biophys J 48, 317–327 (2019). https://doi.org/10.1007/s00249-019-01356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01356-5

Keywords

Navigation