Skip to main content
Log in

Repeatability, precision, and accuracy of the enthalpies and Gibbs energies of a protein–ligand binding reaction measured by isothermal titration calorimetry

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In rational drug design, it is important to determine accurately and with high precision the binding constant (the affinity or the change in Gibbs energy, ∆G), the change in enthalpy (ΔH), and the entropy change upon small molecule drug binding to a disease-related target protein. These thermodynamic parameters of the protein–ligand association reaction are usually determined by isothermal titration calorimetry (ITC). Here, the repeatability, precision, and accuracy of the measurement of the affinity and the change in enthalpy upon acetazolamide (AZM) interaction with human carbonic anhydrase II (CA II) are discussed based on the measurements using several ITC instruments. The AZM–CA II reaction was performed at decreasing protein–ligand concentrations until the determination of ∆G and ΔH was not possible, indicating a lower limit for accuracy. To obtain the confidence intervals (CI) of the ∆G and ΔH of AZM binding to CA II, the binding reaction was repeated numerous times at the optimal concentration of 10 µM and 25 °C temperature. The CI (at a confidence level α = 0.95) for ΔH = − 51.2 ± 1.0 kJ/mol and ∆G = − 45.4 ± 0.5 kJ/mol was determined by averaging the results of multiple repeats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baranauskienė L, Petrikaitė V, Matulienė J, Matulis D (2009) Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J Mol Sci 10:2752–2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyce SE, Tellinghuisen J, Chodera JD (2015) Avoiding accuracy-limiting pitfalls in the study of protein–ligand interactions with isothermal titration calorimetry. bioRxiv 23796

  • Brautigam CA, Zhao H, Vargas C, Keller S, Schuck P (2016) Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat Protoc 11:882–894

    Article  PubMed  CAS  Google Scholar 

  • Broecker J, Vargas C, Keller S (2011) Revisiting the optimal c value for isothermal titration calorimetry. Anal Biochem 418:307–309

    Article  PubMed  CAS  Google Scholar 

  • Chirico RD et al (2013) Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J Chem Eng Data 58:2699–2716

    Article  CAS  Google Scholar 

  • Cimmperman P et al (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demarse NA, Quinn CF, Eggett DL, Russell DJ, Hansen LD (2011) Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal Biochem 417:247–255

    Article  PubMed  CAS  Google Scholar 

  • Dudutiene V et al (2014) Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J Med Chem 57:9435–9446

    Article  PubMed  CAS  Google Scholar 

  • Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Article  PubMed  CAS  Google Scholar 

  • Hansen LD, Fellingham GW, Russell DJ (2011) Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem 409:220–229

    Article  PubMed  CAS  Google Scholar 

  • Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84 (11):5066–5073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klebe G (2015) Applying thermodynamic profiling in lead finding and optimization. Nat Rev Drug Discov 14:95–110

    Article  PubMed  CAS  Google Scholar 

  • Krainer G, Keller S (2015) Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods 76:116–123

    Article  PubMed  CAS  Google Scholar 

  • Krainer G, Broecker J, Vargas C, Fanghänel J, Keller S (2012) Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal Chem 84:10715–10722

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy VM et al (2008) Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein–ligand binding. Chem Rev 108:946–1051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801

    Article  PubMed  CAS  Google Scholar 

  • Ladbury JE, Doyle ML (eds) (2004) Biocalorimetry 2: applications of calorimetry in the biological sciences. Wiley, NewYork

    Google Scholar 

  • Linkuvienė V, Krainer G, Chen W-Y, Matulis D (2016) Isothermal titration calorimetry for drug design: precision of the enthalpy and binding constant measurements and comparison of the instruments. Anal Biochem 515:61–64

    Article  PubMed  CAS  Google Scholar 

  • Mizoue LS, Tellinghuisen J (2004) Calorimetric vs van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba2 + -crown ether complexation. Biophys Chem 110:15–24

    Article  PubMed  CAS  Google Scholar 

  • Morkūnaitė V et al (2015) Intrinsic thermodynamics of sulfonamide inhibitor binding to human carbonic anhydrases I and II. J Enzyme Inhib Med Chem 30:204–211

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG et al (2003) The ABRF-MIRG’02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J Biomol Tech JBT 14:247–269

    PubMed  CAS  Google Scholar 

  • Navratilova I et al (2007) Thermodynamic benchmark study using Biacore technology. Anal Biochem 364:67–77

    Article  PubMed  CAS  Google Scholar 

  • Papalia GA et al (2006) Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology. Anal Biochem 359:94–105

    Article  PubMed  CAS  Google Scholar 

  • Perozzo R, Folkers G, Scapozza L (2004) Thermodynamics of protein–ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res 24:1–52

    Article  PubMed  CAS  Google Scholar 

  • Rogez-Florent T et al (2017) Chiral separation of new sulfonamide derivatives and evaluation of their enantioselective affinity for human carbonic anhydrase II by microscale thermophoresis and surface plasmon resonance. J Pharm Biomed Anal 137:113–122

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2004a) Volume errors in isothermal titration calorimetry. Anal Biochem 333:405–406

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2004b) Statistical error in isothermal titration calorimetry. Methods Enzymol 383:245–282

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2005a) Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109:20027–20035

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2005b) Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal Biochem 343:106–115

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2007) Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl (aq). Anal Biochem 360:47–55

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2008a) Isothermal titration calorimetry at very low c. Anal Biochem 373:395–397

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2008b) Stupid Statistics! Methods in Cell Biology 84:737–780

    Article  CAS  Google Scholar 

  • Tellinghuisen J (2016) Optimizing isothermal titration calorimetry protocols for the study of 1:1 binding: keeping it simple. Biochim Biophys Acta 1860:861–867

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J, Chodera JD (2011) Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal Biochem 414:297–299

    Article  PubMed  CAS  Google Scholar 

  • Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125:14859–14866

    Article  PubMed  CAS  Google Scholar 

  • Wadsö I (2000) Needs for standards in isothermal microcalorimetry. Thermochim Acta 347:73–77

    Article  Google Scholar 

  • Wadsö I, Wadsö L (2005) Systematic errors in isothermal micro-and nanocalorimetry. J Therm Anal Calorim 82:553–558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Grant no. TAP LLT-1/2016 from the Research Council of Lithuania. The authors acknowledge the COST projects CM1406, CM1407, CA15126, and CA15135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daumantas Matulis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paketurytė, V., Linkuvienė, V., Krainer, G. et al. Repeatability, precision, and accuracy of the enthalpies and Gibbs energies of a protein–ligand binding reaction measured by isothermal titration calorimetry. Eur Biophys J 48, 139–152 (2019). https://doi.org/10.1007/s00249-018-1341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1341-z

Keywords

Navigation