Skip to main content

Inhibitor Binding to Carbonic Anhydrases by Isothermal Titration Calorimetry

  • Chapter
  • First Online:
Carbonic Anhydrase as Drug Target

Abstract

Small-molecule drug-candidate compounds are ranked by their capability, primarily described as affinity, to bind a target protein, for example, human carbonic anhydrase (CA), a subject of this book. One of the methods of choice to determine the affinity is isothermal titration calorimetry (ITC), a biophysical technique that enables the determination of the thermodynamic parameters of binding between a protein and a small molecule, both unmodified and free in solution—the change in Gibbs energy, enthalpy, entropy, and heat capacity—through the direct measurement of the heat exchange upon binding. ITC is the only technique that directly determines the change in enthalpy upon binding at isothermal and isobaric conditions providing additional information on the mechanism of interaction and thus plays an important role in drug design. In this chapter we describe the main principles, advantages, and disadvantages of the ITC technique, as well as its use to determine the enthalpy change upon sulfonamide inhibitor binding to catalytically active CA isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leavitt, S., Freire, E.: Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566 (2001)

    Article  CAS  Google Scholar 

  2. Gurney, R.W.: Ionic Processes in Solution. McGraw-Hill Book Company, Inc, New York (1953)

    Google Scholar 

  3. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)

    Article  CAS  Google Scholar 

  4. Schön, A., Freire, E.: Enthalpy screen of drug candidates. Anal. Biochem. 513, 1–6 (2016)

    Article  Google Scholar 

  5. Chodera, J.D., Mobley, D.L.: Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu. Rev. Biophys. 42, 121–142 (2013)

    Article  CAS  Google Scholar 

  6. Klebe, G., Böhm, H.-J.: Energetic and entropic factors determining binding affinity in protein-ligand complexes. J. Recept. Signal Transduct. 17, 459–473 (1997)

    Article  CAS  Google Scholar 

  7. Bronowska, A.K.: Thermodynamics of ligand-protein interactions: implications for molecular design. In: Thermodynamics - Interaction Studies - Solids, Liquids and Gases (2011)

    Google Scholar 

  8. Bastos, M.: Biocalorimetry: Foundations and Contemporary Approaches. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  9. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  Google Scholar 

  10. Chaires, J.B., et al.: Biocalorimetry. Methods 76, 1–2 (2015)

    Article  CAS  Google Scholar 

  11. Trani, J.M.D., et al.: Rapid measurement of inhibitor binding kinetics by isothermal titration calorimetry. Nat. Commun. 9, 893 (2018)

    Article  Google Scholar 

  12. Di Trani, J.M., Moitessier, N., Mittermaier, A.K.: Complete kinetic characterization of enzyme inhibition in a single isothermal titration calorimetric experiment. Anal. Chem. 90, 8430–8435 (2018)

    Article  Google Scholar 

  13. Frasca, V.: Using isothermal titration calorimetry techniques to quantify enzyme kinetics. Ind. Biotechnol. 12, 207–211 (2016)

    Article  Google Scholar 

  14. Prabhu, N.V., Sharp, K.A.: Heat capacity in proteins. Annu. Rev. Phys. Chem. 56, 521–548 (2005)

    Article  CAS  Google Scholar 

  15. Sigurskjold, B.W.: Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal. Biochem. 277, 260–266 (2000)

    Article  CAS  Google Scholar 

  16. Krainer, G., Keller, S.: Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry. Methods (San Diego, Calif.) 76, 116–123 (2015)

    Article  CAS  Google Scholar 

  17. Atri, M.S., Saboury, A.A., Ahmad, F.: Biological applications of isothermal titration calorimetry. Phys. Chem. Res. 3, 319–330 (2015)

    CAS  Google Scholar 

  18. Jayanthi, S.: The versatility of isothermal titration calorimetry in modern biology. J. Anal. Bioanal. Tech. 06, e121 (2015)

    Article  Google Scholar 

  19. Ladbury, J.E., Chowdhry, B.Z.: Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 3, 791–801 (1996)

    Article  CAS  Google Scholar 

  20. Falconer, R.J.: Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015: review of isothermal titration calorimetry from 2011 to 2015. J. Mol. Recognit. 29, 504–515 (2016)

    Article  CAS  Google Scholar 

  21. Perozzo, R., Folkers, G., Scapozza, L.: Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J. Recept. Signal Transduct. Res. 24, 1–52 (2004)

    Article  CAS  Google Scholar 

  22. Freyer, M.W., Lewis, E.A.: In: Methods in Cell Biology, pp. 79–113. Academic Press, Cambridge (2008)

    Google Scholar 

  23. Wiseman, T., Williston, S., Brandts, J.F., Lin, L.N.: Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989)

    Article  CAS  Google Scholar 

  24. Turnbull, W.B., Daranas, A.H.: On the value of C: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866 (2003)

    Article  CAS  Google Scholar 

  25. Broecker, J., Vargas, C., Keller, S.: Revisiting the optimal C value for isothermal titration calorimetry. Anal. Biochem. 418, 307–309 (2011)

    Article  CAS  Google Scholar 

  26. Demarse, N.A., Quinn, C.F., Eggett, D.L., Russell, D.J., Hansen, L.D.: Calibration of nanowatt isothermal titration calorimeters with overflow reaction vessels. Anal. Biochem. 417, 247–255 (2011)

    Article  CAS  Google Scholar 

  27. Chaires, J.B.: Calorimetry and thermodynamics in drug design. Annu. Rev. Biophys. 37, 135–151 (2008)

    Article  CAS  Google Scholar 

  28. Renaud, J.-P., et al.: Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15, 679–698 (2016)

    Article  CAS  Google Scholar 

  29. Ladbury, J.E., Klebe, G., Freire, E.: Adding calorimetric data to decision making in lead discovery: a hot tip. Nat. Rev. Drug Discov. 9, 23–27 (2010)

    Article  CAS  Google Scholar 

  30. Mboge, M.Y., Mahon, B.P., McKenna, R., Frost, S.C.: Carbonic anhydrases: role in pH control and cancer. Metabolites 8, 19 (2018)

    Article  Google Scholar 

  31. Pastorekova, S., Zatovicova, M., Pastorek, J.: Cancer-associated carbonic anhydrases and their inhibition. Curr. Pharm. Des. 14, 685–698 (2008)

    Article  CAS  Google Scholar 

  32. Supuran, C.T., Winum, J.-Y.: Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Med. Chem. 7, 1407–1414 (2015)

    Article  CAS  Google Scholar 

  33. Maren, T.H.: Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. 47, 595–781 (1967)

    Article  CAS  Google Scholar 

  34. Baker, B.M., Murphy, K.P.: Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996)

    Article  CAS  Google Scholar 

  35. Goldberg, R.N., Kishore, N., Lennen, R.M.: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (2002)

    Article  CAS  Google Scholar 

  36. Bian, X., Lockless, S.W.: Preparation to minimize buffer mismatch in isothermal titration calorimetry experiments. Anal. Chem. 88, 5549–5553 (2016)

    Article  CAS  Google Scholar 

  37. Williams, M.A., Daviter, T. (eds.): Protein-Ligand Interactions. Humana Press, Totowa (2013)

    Google Scholar 

  38. Boyce, S.E., Tellinghuisen, J., Chodera, J.D.: Avoiding accuracy-limiting pitfalls in the study of protein-ligand interactions with isothermal titration calorimetry. bioRxiv, 023796 (2015)

    Google Scholar 

  39. Hansen, L.D., Fellingham, G.W., Russell, D.J:. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal. Biochem. 409, 220–229 (2011)

    Article  CAS  Google Scholar 

  40. Kantonen, S.A., Henriksen, N.M., Gilson, M.K.: Evaluation and minimization of uncertainty in ITC binding measurements: heat error, concentration error, saturation, and stoichiometry. Biochim. Biophys. Acta (BBA) 1861, 485–498 (2017)

    CAS  Google Scholar 

  41. Krimmer, S.G., Klebe, G.: Thermodynamics of protein–ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. J. Comput. Aided Mol. Des. 29, 867–883 (2015)

    Article  CAS  Google Scholar 

  42. Tellinghuisen, J.: In: Methods in Enzymology, pp. 245–282 (2004)

    Google Scholar 

  43. Tellinghuisen, J.: Volume errors in isothermal titration calorimetry. Anal. Biochem. 333, 405–406 (2004)

    Article  CAS  Google Scholar 

  44. Tellinghuisen, J.: Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal. Biochem. 343, 106–115 (2005)

    Article  CAS  Google Scholar 

  45. Tellinghuisen, J.: Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109, 00062, 20027–20035 (2005)

    Article  CAS  Google Scholar 

  46. Tellinghuisen, J.: Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J. Phys. Chem. B 111, 11531–11537 (2007)

    Article  CAS  Google Scholar 

  47. Tellinghuisen, J., Chodera, J.D.: Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal. Biochem. 414, 297–299 (2011)

    Article  CAS  Google Scholar 

  48. Wadsö, I., Wadsö, L.: Systematic errors in isothermal micro-and nanocalorimetry. J. Therm. Anal. Calorim. 82, 553–558 (2005)

    Article  Google Scholar 

  49. Tellinghuisen, J.: Calibration in isothermal titration calorimetry: heat and cell volume from heat of dilution of NaCl(Aq). Anal. Biochem. 360, 47–55 (2007)

    Article  CAS  Google Scholar 

  50. Baranauskienė, L., Petrikaitė, V., Matulienė, J., Matulis, D.: Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int. J. Mol. Sci. 10, 00029, 2752–2762 (2009)

    Article  Google Scholar 

  51. Linkuvienė, V., Krainer, G., Chen, W.-Y., Matulis, D.: Isothermal titration calorimetry for drug design: precision of the enthalpy and binding constant measurements and comparison of the instruments. Anal. Biochem. 515, 61–64 (2016)

    Article  Google Scholar 

  52. Brautigam, C.A., Zhao, H., Vargas, C., Keller, S., Schuck, P.: Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nat. Protoc. 11, 882–894 (2016)

    Article  CAS  Google Scholar 

  53. Zhao, H., Piszczek, G., Schuck, P.: SEDPHAT – a platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods 76, 137–148 (2015)

    Article  CAS  Google Scholar 

  54. Linkuvienė, V., et al.: Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q. Rev. Biophys. 51 (2018)

    Google Scholar 

  55. Nguyen, T.H., et al.: Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLoS One 13, e0203224 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

D. M. thanks the Research Council of Lithuania (project TAP LLT-1/2016). M. B. thanks Fundação para a Ciência e Tecnologia (FCT-Portugal) (project UID/QUI/0081/2013 and NORTE-01-0145-FEDER-000028 (Sustainable Advanced Materials (SAM), Programa Operacional Regional do Norte (Norte 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daumantas Matulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paketurytė, V. et al. (2019). Inhibitor Binding to Carbonic Anhydrases by Isothermal Titration Calorimetry. In: Matulis, D. (eds) Carbonic Anhydrase as Drug Target. Springer, Cham. https://doi.org/10.1007/978-3-030-12780-0_6

Download citation

Publish with us

Policies and ethics