Skip to main content
Log in

Hydration facilitates oxygenation of hemocyanin: perspectives from molecular dynamics simulations

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were applied to deoxy- and oxy-hemocyanins using newly developed force field parameters for the dicopper site to evaluate their structural and dynamical properties. Data obtained from the simulations provided information of the oxygenation effect on the active site and overall topology of the protein that was analyzed by root-mean-square deviations, b-factors, and dicopper coordination geometries. Domain I of the protein was found to demonstrate higher flexibility with respect to domain II because of the interfacial rotation between domain I and II that was further endorsed by computing correlative domain movements for both forms of the protein. The oxygenation effect on the overall structure of the protein or polypeptide subunit was further explored via gyration radii evaluated for the metal-binding domain and for the whole subunit. The evaluation of hydration dynamics was carried out to understand the water mediated role of amino acid residues of the solvent tunnel facilitating the entry of oxygen molecule to the dicopper site of hemocyanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ali SA, Grossmann JG, Abbasi A, Voelter W (2007) Structural and conformational analysis of scorpion (Buthus sindicus) hemocyanin using low resolution techniques. Protein Pept Lett 14(5):481–488

    Article  CAS  Google Scholar 

  • Babu CS, Lim C (2006) Empirical force fields for biologically active divalent metal cations in water. J Phys Chem A 110(2):691–699

    Article  CAS  Google Scholar 

  • Bernardi F, Bottoni A, Casadio R, Fariselli P, Rigo A (1996) Ab initio study of the mechanism of the binding of triplet O\(\_2\) to hemocyanin. Inorg Chem 35(18):5207–5212

    Article  CAS  Google Scholar 

  • Brown JM, Powers L, Kincaid B, Larrabee JA, Spiro TG (1980) Structural studies of the hemocyanin active site. 1. Extended X-ray absorption fine structure (EXAFS) analysis. J Am Chem Soc 102(12):4210–4216

    Article  CAS  Google Scholar 

  • Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  • Coates CJ, Nairn J (2013) Hemocyanin-derived phenoloxidase activity: a contributing factor to hyperpigmentation in Nephrops norvegicus. Food Chem 140(1):361–369

    Article  CAS  Google Scholar 

  • Coates CJ, Nairn J (2014) Diverse immune functions of hemocyanins. Dev Comp Immunol 45(1):43–55

    Article  CAS  Google Scholar 

  • Cole DJ, Vilseck JZ, Tirado-Rives J, Payne MC, Jorgensen W (2016) Biomolecular force field parameterization via atoms in molecule electron density partitioning. J Chem Theory Comput 12(5):2312–2323

    Article  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Kollmann PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115(21):9620–9631

    Article  CAS  Google Scholar 

  • Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25(8):392–397

    Article  CAS  Google Scholar 

  • Decker H, Van HKE (2010) Oxygen and the evolution of life. Springer Science and Business Media, Berlin

    Google Scholar 

  • Dolashka P, Voelter W (2013) Antiviral activity of hemocyanins. Invertebr Surviv J 10:120–127

    Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  • Fariselli P, Bottoni A, Bernardi F, Casadio R (1999) Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding. Protein Sci 8(07):1546–1550

    Article  CAS  Google Scholar 

  • Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  • Fox T, Kollman PA (1998) Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B 102(41):8070–8079

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  • Glazer L, Tom M, Weil S, Roth Z, Khalaila I, Mittelman B, Sagi A (2013) Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. J Exp Biol 216(10):1898–1904

    Article  CAS  Google Scholar 

  • Grossmann JG, Ali SA, Abbasi A, Zaidi ZH, Stoeva S, Voelter W, Hasnain SS (2000) Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin. Biophys J 78(2):977–981

    Article  CAS  Google Scholar 

  • Hazes B, Hol WGJ (1992) Comparison of the hemocyanin \(\beta\)-barrel with other Greek key \(\beta\)-barrels: possible importance of the “\(\beta\)-zipper” in protein structure and folding. Proteins Struct Funct Bioinform 12(3):278–298

    Article  CAS  Google Scholar 

  • Hazes B, Kalk KH, Hol W, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z (1993) Crystal structure of deoxygenated limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: clues for a mechanism for allosteric regulation. Protein Sci 2(4):597–619

    Article  CAS  Google Scholar 

  • Hellmann N, Raithel K, Decker H (2003) A potential role for water in the modulation of oxygen-binding by tarantula hemocyanin. Comp Biochem Physiol A Mol Integr Physiol 136(3):725–734

    Article  CAS  Google Scholar 

  • Himmelwright RS, Eickman NC, LuBien CD, Solomon EI, Lerch K (1980) Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins. J Am Chem Soc 102(24):7339–7344

    Article  CAS  Google Scholar 

  • Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) Characterization of dynamics and reactivities of solvated ions by ab initio simulations. J Comput Chem 25(2):211–217

    Article  CAS  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple force fields and development of improved protein backbone rarameters. Proteins Struct Funct Bioinform 65(3):712–725

    Article  CAS  Google Scholar 

  • Hu Z, Williams RD, Tran D, Spiro TG, Gorun SM (2000) Re-engineering enzyme-model active sites: reversible binding of dioxygen at ambient conditions by a bioinspired copper complex. J Am Chem Soc 122(14):3556–3557

    Article  CAS  Google Scholar 

  • Hundahl C, Fago A, Weber RE (2003) Effects of water activity on oxygen-binding in high-molecular weight, extracellular invertebrate hemoglobin and hemocyanin. Comp Biochem Physiol Part Biochem Mol Biol 136(1):83–90

    Article  Google Scholar 

  • Idakieva K, Meersman F, Gielens C (2012) Reversible heat inactivation of copper sites precedes thermal unfolding of Molluscan (Rapana thomasiana) hemocyanin. Biochemica et Biophysica Acta Proteins Proteom 1824(5):731–738

    Article  CAS  Google Scholar 

  • Jaenicke E, Pairet B, Hartmann H, Decker H (2012) Crystallization and preliminary analysis of crystals of the 24-meric hemocyanin of the emperor scorpion (Pandinus imperator). PLoS ONE 7(3):e32548

    Article  CAS  Google Scholar 

  • Kang KY, Scheraga AH (2008) An efficient method for calculating atomic charges of peptides and proteins from electronic populations. J Phys Chem B 112(17):5470–5478

    Article  CAS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652

    Article  CAS  Google Scholar 

  • Kay LE (1998) Protein dynamics from NMR. Nat Struct Biol 76(2):145–152

    CAS  Google Scholar 

  • Kräutler V, Gunsteren WFV, Hünenberger PH (2001) A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22(5):501–508

    Article  Google Scholar 

  • Kuhn-Nentwig L, Kopp LS, Nentwig W, Haenni B, Streitberger K, Schürch S, Schaller J (2014) Functional differentiation of spider hemocytes by light and transmission electron microscopy, and MALDI-MS-imaging. Dev Comp Immunol 43(1):59–67

    Article  CAS  Google Scholar 

  • Lee AL, Wand AJ (2001) Nuclear magnetic resonance (NMR) spectroscopy for monitoring molecular dynamics in solution. eLS Essent Life Sci. https://doi.org/10.1038/npg.els.0003104

    Article  Google Scholar 

  • Lei K, Li F, Zhang M, Yang H, Luo T, Xu X (2008) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32(7):808–813

    Article  CAS  Google Scholar 

  • Lieb B, Gebauer W, Gatsogiannis C, Depoix F, Hellmann N, Harasewych MG, Strong EE, Markl J (2010) Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a 550 kDa polypeptide. Front Zool 7(1):1–13

    Article  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958

    CAS  Google Scholar 

  • Ling J, Nestor LP, Czernuszewicz RS, Spiro TG, Fraczkiewicz R, Sharma KD, Loehr TM, Sanders-Loehr J (1994) Common oxygen binding site in hemocyanins from arthropods and mollusks. Evidence from Raman spectroscopy and normal coordinate analysis. J Am Chem Soc 116(17):7682–7691

    Article  CAS  Google Scholar 

  • Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3):373–380

    Article  CAS  Google Scholar 

  • Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WGJ (1994) Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins Struct Funct Bioinform 19(4):302–309

    Article  CAS  Google Scholar 

  • Magnus KA, Ton-That H, Carpenter JE (1994) Recent structural work on the oxygen transport protein hemocyanin. Chem Rev 94(3):727–735

    Article  CAS  Google Scholar 

  • Markl J (2013) Evolution of molluscan hemocyanin structures. Biochemica et Biophysica Acta Proteins Proteom 1834(9):1840–1852

    Article  CAS  Google Scholar 

  • Mera-Adasme R, Sadeghian K, Sundholm D, Ochsenfeld C (2014) Effect of including torsional parameters for histidine–metal interactions in classical force fields for metalloproteins. J Phys Chem B 118(46):13106–13111

    Article  CAS  Google Scholar 

  • Moin ST, Hofer TS, Sattar R, Ul-Haq Z (2011) Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field. Eur Biophys J 40(6):715–726

    Article  CAS  Google Scholar 

  • Naresh KN, Sreekumar A, Rajan S (2015) 43 studies using molecular dynamics reveal mechanism of interaction of hemocyanin with phenolic substrates. J Biomol Struct Dyn 33:29–30

    Article  Google Scholar 

  • Naresh K, Sreekumar A, Rajan SS (2015) Structural insights into the interaction between molluscan hemocyanins and phenolic substrates: an in silico study using docking and molecular dynamics. J Mol Graph Model 61:272–280

    Article  CAS  Google Scholar 

  • Neutze R (2014) Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Phil Trans R Soc B 369(1647):20130318

    Article  Google Scholar 

  • Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93(3):1157–1204

    Article  CAS  Google Scholar 

  • Panzer D, Beck C, Hahn M, Maul J, Schönhense G, Decker H, Aziz EF (2010) Water influences on the copper active site in hemocyanin. J Phys Chem Lett 1(10):1642–1647

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  • Pick C, Hagner-Holler S, Burmester T (2008) Molecular characterization of hemocyanin and hexamerin from the firebrat Thermobia domestica (Zygentoma). 38(11):977–983

  • Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  Google Scholar 

  • Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28(1):155–179

    Article  CAS  Google Scholar 

  • Saito T, Thiel W (2014) Quantum mechanics/molecular mechanics study of oxygen binding in hemocyanin. J Phys Chem B 118(19):5034–5043

    Article  CAS  Google Scholar 

  • Sapienza PJ, Lee AL (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10(6):723–730

    Article  CAS  Google Scholar 

  • Sigfridsson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comput Chem 19(4):377–395

    Article  CAS  Google Scholar 

  • Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145

    Article  CAS  Google Scholar 

  • Skjærven L, Yao X, Scarabelli G, Grant BJ (2014) Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinform 15(1):399–410

    Article  Google Scholar 

  • Spinozzi F, Maccioni E, Teixeira CV, Amenitsch H, Favilla R, Goldoni M, Di MP, Salvato B, Mariani P, Beltramini M (2003) Synchrotron SAXS studies on the structural stability of Carcinus aestuarii hemocyanin in solution. Biophys J 85(4):2661–2672

    Article  CAS  Google Scholar 

  • Sterner R, Vogl T, Hinz H, Penz F, Hoff R, Föll R, Decker H (1995) Extreme thermostability of tarantula hemocyanin. FEBB Lett 364(1):9–12

    Article  CAS  Google Scholar 

  • Takano Y, Koizumi K, Nakamura H (2009) Theoretical studies of the magnetic couplings and the chemical indices of the biomimetic models of oxyhemocyanin and oxytyrosinase. Inorg Chimica Acta 362(12):4578–4584

    Article  CAS  Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201(8):1085–1098

    CAS  PubMed  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders, Philadelphia

    Google Scholar 

  • Yoon J, Fujii S, Solomon EI (2009) Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Proc Natl Acad Sci 106(16):6585–6590

    Article  CAS  Google Scholar 

  • Zhang X, Huang C, Qin Q (2004) Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antivir Res 61(2):93–99

    Article  CAS  Google Scholar 

  • Zhang Y, Yan F, Hu Z, Zhao X, Min S, Du Z, Zhao S, Ye X, Li Y (2009) Hemocyanin from shrimp Litopenaeus vannamei shows hemolytic activity. Fish Shelfish Immunol 27(2):330–335

    Article  Google Scholar 

  • Zhuang J, Coates CJ, Zhu H, Zhu P, Wu Z, Xie L (2015) Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev Comp Immunol 49(1):96–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tarique Moin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 363 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bux, K., Ali, S.A. & Moin, S.T. Hydration facilitates oxygenation of hemocyanin: perspectives from molecular dynamics simulations. Eur Biophys J 47, 925–938 (2018). https://doi.org/10.1007/s00249-018-1316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1316-0

Keywords

Navigation