Skip to main content
Log in

Erlang flow of hydrophilic pore formation and closure events in a lipid bilayer during phase transition resulting from diffusion in the radius space

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The Smoluchowski equation with an energy profile of a special type and an assumed hydrophobic (“half”) pore source term is used to describe the process of hydrophilic pore formation in a lipid bilayer at the gel-liquid phase transition. The source term reflects the occurrence of molecule packing defects in a lipid bilayer at phase transition. The time sequences of the pore formation and closure events are treated as non-stationary, second-order Erlang flows whose characteristics depend on the equation solution. The computed distributions of the time intervals between hydrophilic pores, and pore lifetimes agree with the previously published experimental interpulse interval and pulse duration histograms for the current fluctuations through planar bilayer membranes of DPPC immersed in a LiCl aqueous solution containing polyethylene glycol. Thus, the statistical analysis of pore formation and closure times leads us to conclude that firstly, the increased permeability of a lipid bilayer during the gel-liquid phase transition is accounted for by the emergence of additional hydrophobic defects in the heterogeneous structure of the bilayer and secondly, that the non-exponential distributions of the lipid channel closed and open times observed in experiments are evidence that the process of hydrophilic pore formation is not a one-step process but involves at least two dependent events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen T, Kyrsting A, Bendix PM (2014) Local and transient permeation events are associated with local melting of giant liposomes. Soft Matter 10:4268–4274

    Article  CAS  PubMed  Google Scholar 

  • Anosov AA, Kuprijanova MS, Nemchenko OYu, Norik VP, Sergeenko EV, Smirnova EYu (2015) States of lipid pores in bilayer lipid membranes at a phase transition in a LiCl solution with addition of molecules of polyethylene glycol. Biophysics 60:73–78

    Article  CAS  Google Scholar 

  • Anosov AA, Sharakshane AA, Smirnova EYu, Nemchenko OYu (2016) Application of the Smoluchowski equation with a source term to the model of lipid pore formation during a phase transition. Biophysics 61:936–941

    Article  CAS  Google Scholar 

  • Anosov AA, Sharakshane AA, Smirnova EY, Nemchenko OYu (2017) Bilayer permeability during phase transition as an Erlang flow of hydrophilic pores resulting from diffusion in the radius space. Biochemistry (Moscow) Suppl Ser A Membr Cell Biol 11:8–16

    Article  Google Scholar 

  • Antonov VF, Petrov VV, Molnar AA, Predvoditelev DA, Ivanov AS (1980) The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature. Nature 283(5747):585–586

    Article  CAS  PubMed  Google Scholar 

  • Antonov VF, Anosov AA, Norik VP, Smirnova EYu (2005) Soft perforation of planar bilayer lipid membranes of dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state. Eur Biophys J 34:155–162

    Article  CAS  PubMed  Google Scholar 

  • Antonov VF, Smirnova EYu, Anosov AA, Norik VP, Nemchenko OYu (2008) PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers. Biophysics 53:390–395

    Article  Google Scholar 

  • Böckmann R, de Groot R, Kakorin S, Neumann E, Grubmüller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruseiro-Hansso L, Mouritsen OG, Singer MA, Zuckermann M (1988) Passive ion permeability of lipid membranes modeled via lipid-domain interfacial area. BBA 944:63–72

    Article  Google Scholar 

  • Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller SE, Pastor RW (1996) On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys J 71(1996):1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys J 67:42–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallaher J, Wodzinska K, Heimburg T, Bier M (2010) Ion-channel-like behavior in lipid bilayer membranes at the melting transition. Phys Rev E 81:061925

    Article  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AV (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  CAS  PubMed  Google Scholar 

  • Haverstick DM, Glaser M (1988) Visualization of domain formation in inner and outer leaflets of a phospholipid bilayer. J Cell Biol 106:1885–1892

    Article  CAS  PubMed  Google Scholar 

  • Heimburg T (2010) Lipid ion channels. Biophys Chem 150:2–22

    Article  CAS  PubMed  Google Scholar 

  • John K, Schreiber S, Kubelt J, Herrmann A, Muller P (2002) Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes. Biophys J 83:3315–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlin S, Taylor HM (1975) A first course in stochastic processes, 2nd edn. Academic Press, New York, p. 155

    Google Scholar 

  • Little JD (1961) A proof for the queuing formula: L = λ W. Oper Res 9:383–387

    Article  Google Scholar 

  • Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YuA, Chernomordik LV (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J 80:1829–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell KT, Weaver JC (1986) Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem Bioelectroenerg 15:211–227

    Article  Google Scholar 

  • Saulis G (1997) Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophys J 73:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillerud LO, Barnett RE (1982) Lack of transbilayer coupling in phase transitions of phosphatidylcholine vesicles. Biochemistry 21:1756–1760

    Article  CAS  PubMed  Google Scholar 

  • Smith K, Neu J, Krassowska W (2003) Model of creation and evolution of stable electropores for DNA delivery. Biophys J 86:2813–2826

    Article  Google Scholar 

  • Stewart DA, Gowrishankar TR, Weaver JC (2004) Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans Plasma Sci 32:1696–1708

    Article  Google Scholar 

  • Teleman DP, Bentz J (2008) Molecular dynamic simulation of the evolution of hydrophobic defects in one monolayer of PC bilayers. Relevance for membrane fusion mechanisms. Biophys J 83:1501–1510

    Article  Google Scholar 

  • Tieleman DP, Leontiadou H, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383

    Article  CAS  PubMed  Google Scholar 

  • Tien HT (1989) Interfacial chemistry of bilayer lipid membranes (BLM). Surfactants Solut 8:133–178

    Google Scholar 

  • Tolpekina TV, den Otter WK, Briels WJ (2004) Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations. J Chem Phys 121:12060–12066

    Article  CAS  PubMed  Google Scholar 

  • Weaver JC, Chizmadzhev YuA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Wohlert J, den Otter WK, Edholm O, Briels WJ (2006) Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J Chem Phys 124:154905

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich B, Leirer C, Idzko A-L, Keyser UF, Wixforth A, Myles VM, Heimburg T, Schneider MF (2009) Phase state dependent current fluctuations in pure lipid membranes. Biophys J 96:4592–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. V. F. Antonov for his interest in the work and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Sharakshane, A.A., Smirnova, E.Y. et al. Erlang flow of hydrophilic pore formation and closure events in a lipid bilayer during phase transition resulting from diffusion in the radius space. Eur Biophys J 47, 297–307 (2018). https://doi.org/10.1007/s00249-017-1261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1261-3

Keywords

Navigation