Skip to main content
Log in

Curvature-dependent protein–lipid bilayer interaction and cell mechanosensitivity

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Cells respond to applied external forces through different mechanosensitive processes, with many of them based on the interaction between membrane-embedded proteins and their lipid environments. This interaction can depend on membrane curvature at the location of such proteins. Here we elucidate the general characteristics of a macroscopically defined protein–lipid bilayer interaction based on a mismatch between the shape of the protein surface and the surrounding membrane curvature. It is shown how the parameters of this interaction are related to the experimentally determined distribution of membrane-embedded proteins between highly curved tubular and flat membrane regions of a giant phospholipid vesicle. The results obtained for such distribution of potassium channel KvAP are presented as an example. Possible participation of the curvature-dependent protein–lipid bilayer interaction in mechanosensitive processes is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GES, Bassereau P (2014) Membrane shapes modulate transmembrane protein distribution. Develop Cell 28:212–218

    Article  CAS  Google Scholar 

  • Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci 111:7898–7905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battle AR, Petrov E, Prithwish P, Martinac B (2009) Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method. FEBS Lett 583:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bavi N, Nakayama Y, Bavi O, Cox CD, Qin QH, Martinac B (2014) Biophysical implications of lipid bilayer rheometry for mechanosensitive channels. Proc Nat Acad Sci 111:13864–13869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Božič B, Kralj-Iglič V, Svetina S (2006) Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Phys Rev E 73:041915(11)

  • Božič B, Das LS, Svetina S (2015) Sorting of integral membrane proteins mediated by curvature-dependent protein–lipid bilayer interaction. Soft Matter 11:2479–2486

    Article  PubMed  Google Scholar 

  • Brohawn SG, Campbell EB, MacKinnon R (2014) Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–130

    Article  CAS  PubMed  Google Scholar 

  • Cuello LG, Cortes DM, Perozo E (2004) Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306:491–495

    Article  CAS  PubMed  Google Scholar 

  • Fournier JB (1996) Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76:4436–4439

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Kralj-Iglič V, Svetina S, Žekš B (1996) Shapes of bilayer vesicles with membrane embedded molecules. Eur Biophys J 24:311–321

    Article  PubMed  Google Scholar 

  • Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B 10:5–8

    Article  Google Scholar 

  • Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1:110–124

    Article  CAS  PubMed  Google Scholar 

  • Martinac B (2014) The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim Biophys Acta 1838:682–691

    Article  CAS  PubMed  Google Scholar 

  • Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mondal S, Khelashvili G, Weinstein H (2014) Not just an oil slick: how the energetic of protein–membrane interactions impacts the function and organization of transmembrane proteins. Biophys J 106:2305–2316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nassoy P, Lamaze C (2012) Stressing caveolae new role in cell mechanics. Trends Cell Biol 22:381–389

    Article  PubMed  Google Scholar 

  • Nuccitelli R (1978) Ooplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electric current. Dev Biol 62:13–33

    Article  CAS  PubMed  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane–protein function. Nature 459:379–385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J, Bassereau P, Roux A (2012) Nature of curvature coupling of amphiphysin with membrane depends on its bound density. Proc Natl Acad Sci 109:173–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sukharev S, Sachs F (2012) Molecular force transduction by ion channels-diversity and unifying principles. J Cell Sci 125:3075–3083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svetina S, Žekš B (1989) Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J 17:101–111

    Article  CAS  PubMed  Google Scholar 

  • Svetina S, Žekš B (1990) The mechanical behavior of cell membranes as a possible physical origin of cell polarity. J Theor Biol 146:115–122

    Article  CAS  PubMed  Google Scholar 

  • Svetina S, Kralj-Iglič V, Žekš B (1990) Cell shape and lateral distribution of mobile membrane constituents. In: Kuczera J, Przestalski S (eds) Biophysics of membrane transport, vol II, pp 139–155

  • Yoshimura K, Sokabe M (2015) Mechanosensitivity of ion channels based on protein–lipid interaction. J R Soc Interface 7:S307–S320

    Article  Google Scholar 

  • Zhu C, Das SL, Baumgart T (2012) Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys J 102:1837–1845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Drs. Bojan Božič and Roger Pain critically read the manuscript. Drs. Bojan Božič and Jure Derganc helped in preparing Figs. 2 and 3, respectively, and Mr. Marjan Verč helped in preparing Figs. 1, 4, and 5. This work was supported by the Slovenian Research Agency through the research program P1-0055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša Svetina.

Additional information

Special issue title “Biophysics of Mechanotransduction”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetina, S. Curvature-dependent protein–lipid bilayer interaction and cell mechanosensitivity. Eur Biophys J 44, 513–519 (2015). https://doi.org/10.1007/s00249-015-1046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1046-5

Keywords

Navigation